
The new FST compression algorithms
Yves Chartier – 2nd version – May 20061

Introduction
This document describes the compression algorithms recently introduced in the RPN standard files.

Floating point numbers inside RPN standard files are stored internally as a stream of unsigned integers through a process
called quantization. The size of each quantized values is NBITS. NBITS can vary from 1 to 24 bits, 12 and 16 bits being the
values used the most often. This yields a compression ratio of 2.0 for the R16 data type (an R16 field is composed of 16-bit
unsigned integers) and 2.67 for the R12 (12-bit unsigned integers) data type.

The formula used to transform the real values into integers is

INT = 2nbits * (REAL – min) / range

where range is 2N, N being the nearest exponent such that 2N > (max – min). This process is lossy, there is an irreversible loss
of precision occuring in that transformation. However, the amount of error induced by this transformation is generally within
acceptable levels, often much smaller that typical observation errors.

The demonstration of the technique will be done with the help of a practical example. The 2 following fields, a sea level
pressure 0 hr forecast and a land-sea mask extracted from a GEM regional run, will be referred to in the text.

Figure 1 Figure 2

Currently there are 2 compression methods implemented, one that we will call “minimum”, and the other that we will call
“Lorenzo predictor”, which replaces the “bi-cubic” method. Both methods use the bi-dimensional property of the data
structures.

1 (The 1st version version of this document was produced in November 2004)

Version : 05/05/2006 Page 1 of 17

The minimum tile method
This method segments the field in 5x5 tiles, as shown in the following diagram.

Figure 3 shows the first 5x5 values of the PN (sea level pressure field). Some statistics about the field are shown in the right
column.

Figure 3

Max 1026.71301
Min 997.797913
Delta 28.9151
Normalized Range 32
nbits 16

The 1st point of the PN field has for value
1017.78619.

This value would be encoded as
216 * (1017.78619 – 997.79791) / 32.0 = 40936

Version : 05/05/2006 Page 2 of 17

Here are the values of the first 5x5 grid.

when encoded in 16 bits these values become

The minimum technique consists in encoding the minimum value of tile, and in each cell the difference between the actual
value and the minimum. If the difference is small in the tile, then we need less bits to encode the tile, thus saving space.

This is the same tile encoded with the minimum method

The minimum value is located at point (5,1), the maximum at (1,1). The tile range is 1132, implying that 11 bits are required to
encode this tile (211 = 2048). The bitstream is composed of the following elements :

• nbits_needed (the number of bits needed, from 0 to 15),
• the minimum value of the tile
• the 25 (5x5) encoded differences between the quantized values and the min.

This tile would be encoded that way.

word 0 1
bits 0 8 16 24 0 8 16 24
token nbits Minimum Fld(1,1) Fld(2,1) Fld(3,1) Fld(4,1) ...

The total space taken by this 5 x 5 tile is
nbits_needed (4) + minimum value (16) + 25 tokens * 11 bits/token = 4 + 16 + 11*25 = 295 bits.

The original stream was taking 25 * 16 bits = 400 bits. So we save 105 bits, or a compression ratio of 400 / 295 = 1.36. The
encoding of the second tile starts exactly on the next bit closing the firs 5 x 5 tile.

Version : 05/05/2006 Page 3 of 17

1017,58 1017,59 1017,57 1017,52 1017,45
1017,65 1017,65 1017,60 1017,52 1017,42
1017,73 1017,68 1017,61 1017,49 1017,34
1017,79 1017,68 1017,56 1017,41 1017,23

40373 40415 40417 40340 40254
40515 40537 40498 40389 40240
40665 40659 40551 40659 40551
40812 40727 40565 40331 40565
40936 40726 40474 40166 39804

569 611 613 536 450
711 733 694 585 436
861 855 747 855 747

1008 923 761 527 761
1132 922 670 362 0

Consider the same 1st 5x5 tile from the MG field. All
the values are identical. In that case, the stream is
composed of :
• nbits_needed (here 0),
• the minimum value of the tile, which is in fact a

constant.

In that case we need only 20 bits : 4 for
nbits_needed, and 16 for the constant token. In
that case the savings are 20:1, 20 bits instead of
400.

Adjustment of grid boundaries
The size of the subcells is adjusted to the limit of the grid, as shown in the following diagram.

Version : 05/05/2006 Page 4 of 17

Additional comments and observations

Why a 5x5 cell size ?

The optimal cell size is a compromise between the overhead required for each cell (nbits_needed and local_minimum)
and the reduction of the range of observed values within a cell.

The smaller the cell, the smaller the variation of the field inside the cell, the smaller the number of bits needed to represent the
variation, yielding more compression. But then we need more cells, adding a fixed per-cell overhead.

Empirical tests have shown that 5x5 the cell size that gives the best average compression.

Worst Case Scenario :

All the 5x5 cells have values that cover the minimum and maximum range of the field. In that situation we observe an
expansion of the field, due to the overhead of having to include for each cell the nbits_needed and local_minimum fields.
This overhead is (4 + nbits) per 5x5 cell. For a 16 bit 1000x1000 field, the overhead would be 1000000 / 25 * (4+16) =
800000 bits. So the field would take 16,800,000 bits instead of 16,000,000, an increase of 5 %.

Best Case Scenario :

A field with constant values. For each 5x5 cell we need only (4 + nbits) bits. For the same 1000x1000 field, the size taken by
the field would be 800,000 bits, yielding a compression ratio of 16,000,000 / 800,000 = 20.0.

Average scenario :

There is no such thing since the fields vary so much ! Currently, a 24 hour 12-bit regional GEM prog in ETA coordinates taking
587 megabytes (1055 fields of dimension 576x641) can be compressed to 278 megs (a 2.11 compression ratio). The globel GEM
prog in ETA coordinates valid at the same time taking 89 megs compresses to 54 megs (a 1.64 compression ratio).

The NBITS_NEEDED parameter :

This field takes 4 bits, and hence has a range from 0-15. To accomodate the cases when 16-bits are needed, we decided to use
16 bits when NBITS_NEEDED is 15 or 16.

Version : 05/05/2006 Page 5 of 17

The bi-cubic sample tile method
This methode is not used anymore, since the “Lorenzo predictor” gives 20% more compression and runs almost as fast as the
minimum tile method.

However a fair amount of work has been done in the design of this algorithm, so I think it is fair to keep this part of the
documentation. There is also the fact that some legacy datasets have been saved using that algorithm, so this information can
be useful in accessing this data.

In that method we decompose the field in 3x3 sub-grids. The 1st point of each sub-grid is a part of a coarse grid from which a
bi-cubic prediction of the values of the other points will be computed. What we need to keep in order to reconstruct the field is
the coarse grid and the prediction errors. If the prediction errors are small, then we can save space.

By doing many tests involving different step sizes, empirical observations have shown that the optimal step size for the bi-
cubic interpolator is 3.

Here is a sample view of the coarse grid needed to predict values for the 8 points of the subcell shown in blue for the sea level
pressure field shown in Figure 3.

Version : 05/05/2006 Page 6 of 17

So given the coarse 4x4 grid, we want to interpolate values for the zone in red.

40077 40286 40092 39581

40515 40389 39794 39075

40936 40166 39046 38564

After the bi-cubic interpolation, we have

Original values

40286 40265 40202
40340 40254 40133
40389 40240 40032

Predicted values

40339 40277 40174
40377 40269 40119
40389 40226 40023

Predicted errors

-53 -12 28
-37 -15 14

0 14 9

The bitstream for the bi-cubic sample method is theoritically split in two parts
• the coarse grid (nbits * ni_coarse * njcoarse)
• the differences (prediction errors)

coarse_grid prediction_errors

The prediction errors part can be expressed as a stream of subcells
• nbits_needed
• sub-tile (8 * nbits_needed) tokens

coarse_grid nbits_needed
(1..3,1..3)

err(2,1) err(3,1) err(1,2) err(2,2) err(3,2) err(1,3) err(2,3) err(3,3) nbits_needed
(4..6,1..3)

Err(5,1) Err(6,1)...

The size of the coarse grid depend on the grid geometry, but is roughly 1/9 of the original
• ni_coarse=INT((ni+4)/3)
• nj_coarse=INT((nj+4)/3)

nbits_needed is the number of bits needed to encode the differences. In the example shown above, we have a maximum
error of 53. So we need 6 bits per token to cover this range (26 = 64), plus one more bit for the sign (which unfortunately we
cannot avoid), which yields 7 bits.

The total space in bits taken by this tile is 4 + 8 * 7 = 60 bits. The original stream would have taken 8 * 16 = 128 bits, so this is
a saving of 108/60 = 2.13. Please note that the worst error in that predicted tile is 0.13 % . The average prediction error for the
whole tile is 0.06 %.

The following could be a valid encoding of the tile.

word 0 1
bits 0 8 16 24 0 8 16 24
token nbits fld(2,1) fld(3,1) fld(1,2) fld(2,2) fld(2,2) fld(1,3) fld(2,3) fld(3,3) nbits

The reader can take note that we do not use a reference token (as in the minimum method). It has been empirically observed
that the errors are on average evenly distributed around 0.

When all the prediction errors are 0, only the field “nbits_needed” is encoded, yielding a compression ratio of 128 / 4 = 32.

Version : 05/05/2006 Page 7 of 17

As a measure of protection we have added a supplementary field called nbits_req_container, positioned between the
coarse grid and the error streams. This field is an insurance policy against the possible overshoot or undershoots caused by the
bi-cubic method.

If the original stream is 16-bits, then it is possible for the prediction errors produced by the bi-cubic method to be greater than
65535.

Here is a worst case scenario
65535 0 0 65535

0 65535 65535 0

0 65535 65535 0

65535 0 0 65535

Numerical analysis shows that the maximum value one can find is about ±81626, expanding the needed range to 17 bits.
So this is why we introduced this 3-bit field, which can contain only two values : 4 or 5 bits.

The final bitstream lies down as follows

coarse_grid sizeof(nbits) prediction_errors

An additional optimization

Consider the following data structure
coarse_grid prediction_errors (....)

If the prediction errors are small, then the size taken by the coarse grid becomes a significant part of the total compressed
data. It has been found that re-applying the same predictor-corrector scheme on the coarse grid could yield some additional
compression. Here is a graphical outline of the method.

At level 1, the 0 level coarse grid is decomposed into another coarse grid and prediction errors, that we will call “coarse grid 1”
and “Prediction errors 1”.

And the the final step, where “coarse grid 1” is decomposed into “coarse grid 2” and “prediction errors 2”.

The final stream is assembled this way.

It was decided that two-more level of compression would be added to the streams. We stopped to 2 levels because the

Version : 05/05/2006 Page 8 of 17

Original Stream

Prediction errors - Level 0Coarse grid - Level 0

Coarse grid - Level 0

Coarse grid 1 Prediction errors 1

Coarse grid 2

Prediction errors 2

Coarse grid 1

Prediction errors - Level 0Prediction errors 1Coarse grid 2

Prediction errors 2

potential savings were infinitesimal.

The following table outlines the savings possible when we have a compression ratio of 2 between each coarse grid level.

% of multi-level compressed field

Level Coarse grid 2 Errors 2 Coarse grid 1 Errors 1 Coarse grid 0 Errors 0 % of level 0
compressed field

Compression ratio
obtained

% of original field

0 22.2 % 77.8 % 100.0 % 2,00 50,00%

1 2.78% 9.72% 87.5% 88.89 % 2,25 44,44%

2 0.31 % 1.10 % 9.86% 88.73% 87.65 % 2,28 43,83%

The following table outlines the savings possible when we have a compression ratio of 4 between each coarse grid level.

Level Coarse grid 2 Errors 2 Coarse grid 1 Errors 1 Coarse grid 0 Errors 0 % of level 0
compressed field

Compression ratio
obtained

% of original field

0 44.4 % 55.6 % 100.0 % 4 25,00%

1 7.41% 9.26% 83.3 % 66.67 % 6 16,67%

2 0.87% 1.09 % 9.80% 88,24% 62,96% 6.35 15.74%

At level 0, we decompose the original stream into a coarse grid and prediction errors.
In the above diagrams, we neglected for simplicity the field “nbits_needed” between the coarse grid and the prediction errors.
The final compression scheme looks like this.

Here is the final data layout (not drawn to scale).

coarse_grid sizeof(nbits_needed) prediction_errors (....)

coarse_grid1 nbits_needed1 pred_errors1 sizeof(nbits_needed) prediction_errors (....)

coarse_grid2 nbits_needed2 pred_errors2 nbits_needed1 pred_errors1 sizeof(nbits_needed) prediction_errors (....)

Interpolation steps
We will show graphically the steps used in the prediction of the inner points.

In the following example, we have ajus_x=2, ajus_y = 1
(ajus_x = (ni-1) % 3, ajus_y = (nj-1) % 3). The points in blue
define our coarse grid. Remark the spacing of the points in
the right 2 columns and the upper 3 rows.

We start the interpolation on the inner grid points aligned
with the coarse grid y axis. We stop to the last row that is a
multiple of 3 points away from the 1st row.

Version : 05/05/2006 Page 9 of 17

(ni,nj) (ni,nj)

We then interpolate the top row by horizontal bicubic
interpolation. We interpolate all the inner points except the but last row.

We finally interpolate the next-to-last row.

Version : 05/05/2006 Page 10 of 17

(ni,nj) (ni,nj)

(ni,nj)

Adjustment of grid boundaries
Independently of grid boundaries, the coarse grids always start at point (1,1) and increase by steps of 3 in every axis.

The following picture shows all the possible combinations of grid boundaries with a tile step of 3. For the last before column
where ajus_x = 2 the predicted value of z(ni-1,j) = 0.5*(z(ni-2,j)+z(ni,j)). For the last before row where ajus_y = 2, the
predicted value of z(i,nj-1) = 0.5*(z(i,nj-2)+z(i,nj))

(ni,nj)

Ajus_x=0, ajus_y = 0

(ni,nj)

Ajus_x=0, ajus_y = 1

(ni,nj)

Ajus_x=1, ajus_y = 2

(ni,nj)

Ajus_x=1, ajus_y = 1

(ni,nj)

Ajus_x=2, ajus_y = 1

(ni,nj)

Ajus_x=2, ajus_y = 2

(ni,nj)

Ajus_x=0, ajus_y = 2

(ni,nj)

Ajus_x=1, ajus_y = 0

(ni,nj)

Ajus_x=2, ajus_y = 0(m,n) (m,n)

(m,n)

(m,n)(m,n)(m,n)

(m,n)

(m,n)

(m,n)

Version : 05/05/2006 Page 11 of 17

(1,1)

Stabilization of the bi-cubic predictor
The following code is what is used in standard cubic interpolation algorithms, where 0.0 <= dx <= 1.0.

 dx
 |---------|----*----|---------|----
 z1 z2 z3 z4

 parameter (one = 1.0D0)
 parameter (three = 3.0D0)
 parameter (six = 6.0D0)
 parameter (sixth = one/six)
 parameter (third = one/three)
 real*8 cubic, dx,dy,z1,z2,z3,z4

 cubic(z1,z2,z3,z4,dx)=((((z4-z1)*sixth + 0.5*(z2-z3))*dx + 0.5*(z1+z3)-z2)*dx
 + z3-sixth*z4-0.5*z2-third*z1)*dx+z2

The above formulation can lead to round-off differences when executed on different computers or compilers, because there
are 4 divisions in this formulation (dx = 1/step or 2/step, third = 1/3, sixth = 1/6).

In order to avoid this potential problem, we reformulated the cubic function like this

 parameter (fac1 = 108.0D0) ! 12 * 3 * 3
 parameter (fac2 = 1944.0D0) ! 72 * 3 * 3 * 3
 parameter (unsurfac2 = 1.0D0/fac2) ! 1 / (72 * 3 * 3 * 3)
 icubic(z1,z2,z3,z4,dx)=z2+(dx*(6*(dx*(2*(dx*((z4-z1)+3*(z2-z3)))+18*((z1+z3)-2*z2)))+
 fac1*(6*z3-z4-3*z2-2*z1)))* unsurfac2

This formulation is valid only for a step factor of 3. In that formulation dx is an integer (1 or 2). Since we are working in double
precision, and that maximum tokens have a value of 65535, the results of the multiplications are always exact. We have only
one division left, mult/1944. The only round-off problem that remains is when mod(mult, 1944) = 972, in which the division
result is of course 0.5 but can be computed as 0.499999, which when truncated will be off by 1 digit.

This potential problem was solved by adding the number 0.5001 to the result of the function.

The following table shows the effect of adding this factor to the result when mod(mult,1944) = 971, 972 or 973. Since the
numerator cannot be greater than 81626, at 64-bit arithmetic we have ample precision to represent the numbers shown in the
table.

Integer value 971 972 973

Real value 0.49948560 0.50000000 0.50051440

value + 0.5001 0.99958560 1.0001 1.00061440

Truncated value 0 1 1

Version : 05/05/2006 Page 12 of 17

Additional comments

Worst Case Scenario :

All the 3x3 cells have values that cover the minimum and maximum range of the field. In that situation we observe an
expansion of the field, due to the addition of the 5-bit nbits_needed field + 18 bits per interpolated cell. Because of the
three-level prediction scheme, it is difficult to define a general formula. For a 1000x1000 field 16-bit field, we can compute
the following table

bits

Level Coarse grid 2 Errors 2 Coarse grid 1 Errors 1 Coarse grid 0 Errors 0 Total size Compression ratio
obtained

% of original field

0 1784896 16621844 0,00% 0,87 115,04%

1 200704 1869056 16621844 18691604 0,86 116.82 %

2 23104 215156 1869056 16621844 18729160 0,85 117.06 %

In that worst case scenario, the compressed field takes 17% more space than the original.

Best Case Scenario :

A field with constant values. Let's compute the savings for the same field as above. Note that the size of the prediction errors is
the nicoarse * njcoarse * nbits_needed.

bits

Level Coarse grid 2 Errors 2 Coarse grid 1 Errors 1 Coarse grid 0 Errors 0 Total size Compression ratio
obtained

% of original field

0 1784896 446224 2231120 7,17 13,90%

1 200704 50176 446224 697104 22,95 4,40%

2 23104 5776 50176 446224 0 30,46 3,30%

We can see here that the compression ratio reached is 30,46, which is better than the theoritical maximum of 20.0 that we can
get from the minimum method.

Average scenario :

This method yields on average an increase of 30 % in the compression ratio, compared to the minimum method.

The NBITS_NEEDED parameter :

As in the minimum method, this field takes 4 bits, and hence has a range from 0-15. To accomodate the cases when 16-bits are
needed, we decided to use 16 bits when NBITS_NEEDED is 15 or 16.

Minimum grid size :

To work the bicubic interpolation scheme needs at a minimum a 4x4 grid.

If we reverse the grid size computation scheme, we get the following coarse grid sizes.

Level 2 4 x 4

Level 1 8 x 8

Level 0 20 x 20

Original 56 x 56

For the bi-cubic interpolation scheme to work, we need that the minimum dimension of one of the two grid axes to be 56.

Version : 05/05/2006 Page 13 of 17

A practical example

Let's take the PN example shown in Figure 3.
The grid size is 181x181. From these values, the following quantities are derived :

ni 181

nicoarse 61

nicoarse_level1 21

nicoarse_level2 8

The size of the multi-level compressed field is 263848 bits (compared to an original size of 524176 (181*181*16 bits).

The “level 0” prediction errors amount for 223200 bits.
The “level 1” prediction errors amount for 34656 bits (including the 3 bits required for the nbits_required field).
The “level 2” compression gives a size of 5992 bits : 1024 for the coarse grid (8 * 8 * 16), 3 for the number of bits required to
encode the maximum errors (nbits_required, can be 4 or 5) and 4965 for the prediction errors.

So the compressed data stream would be structured this way (cell size not drawn to scale)

coarse_grid2 sizeof(nbits_nee
ded2)

pred_errors2 sizeof(nbits_nee
ded1)

pred_errors1 sizeof(nbits_needed) prediction_errors (....)

5992 (8x8) 3 4944 3 34653 3 223200

0.39% 1.87 % 3 13.1 % 3 84.6 %

If we had done only 1 level of compression, the stream size would have been

coarse grid 59536 (61 * 61 * 16 bits / token)

nbits_needed 3

prediction_errors 223200

Total 282739

So by using a 3-level compression scheme, we saved 282739 - 263848 = 18891 bits. This yields a compression ratio of 1.99
instead of 1.85, an increase of 6.7%

Version : 05/05/2006 Page 14 of 17

The Lorenzo predictor tile method
The Lorenzo predictor (also called the parallelogram predictor) has been introduced to the author in October 2003, during a
seminar about compression held during the Visualisation 2003 conference.2

The Lorenzo prediction algorithm is deceiptively simple, it is illustrated here.

fld(i+1,j+1) = fld(i,j+1) + fld(i+1,j) – fld(i,j)

This method has a degree 1 accuracy in 2-dimensions, degree 2 in 3-D and degree 3 in 4-D.

The value of point (i+1,j+1) is predicted from its 3 neighbors, and what is stored is the prediction error.

Here is what we get with the numeric example introduced in the mininum tile method.

The original integer stream

40373 40415 40417 40340 40254
40515 40537 40498 40389 40240
40665 40659 40551 40659 40551
40812 40727 40565 40331 40565
40936 40726 40474 40166 39804

The predicted stream with the Lorenzo algorithm (the values in gray are seed values and are not predicted)

40373 40395 40376 40308 40191
40515 40509 40429 40606 40281
40665 40580 40497 40317 40893
40812 40602 40475 40257 39969
40936 40726 40474 40166 39804

The prediction errors

0 -20 -41 -32 -63
0 -28 -69 217 41
0 -79 -54 -342 342
0 -125 -90 -74 -596
0 0 0 0 0

2 Look on the web for papers : http://www.gvu.gatech.edu/~jarek/papers/Lorenzo.pdf

Version : 05/05/2006 Page 15 of 17

fld(i+1,j+1)

fld(i+1,j)fld(i,j)

fld(i,j+1)

http://www.gvu.gatech.edu/~jarek/papers/Lorenzo.pdf

If we look at the first 3x3 predicted cells

-28 -69 217
-79 -54 -342

-125 -90 -74

We see that the range of values goes from -342 to 217. To compute how many bits are needed, we take the maximum of the
absolute value of the errors and we add theoritical sign bit. In that case the maximum is 342, thus we need 9 bits (29=512) + 1
bit for the sign = 10 bits.

In this example the Lorenzo predictor does not seem to perform much better than the minimum tile method but in practice it
proved to be the best of the three methods implemented. One big advantage of this method is that it has near zero overhead :
only ni + nj – 1 original values need to be kept to recreate the original stream. By comparison, the overhead of the two other
methods is of order n2. It also requires only 2 integer mathematical operations (compared to the 125 flops of the bi-cubic
method).

As for the bi-cubic method, it happens that the prediction errors can be greater than 16 bits. Here is a worst case scenario. For
this sample of original values

65535 0

0 65535

the predicted value here would be 65535 + 65535 – 0 = 131070, and the prediction error is 0-131070 = -131070, requiring 18
bits to be encoded. In that case, the “nbits_required” field would be set to 5 instead of the default of 4.

So, as for the bi-cubic method, the first element of the bit stream is a 3-bit token containing the number of bits required for the
NBITS field : 4 or 5. Then follow the 1st row of the field, then the 1st column of the field (minus the 1st element), and then the
prediction errors, broken in in sets of 3x3 cells, each containing the minimum number of bits required to encode the errors
and and the prediction errors.

nbits_req Orig values
(1..ni,1)

Orig values
(1,2..nj)

nbits_needed
(2..4,2..4)

Err(2,2) err(3,2) err(4,2) Err(2,3) Err(3,3) err(4,3) Err(2,4) Err(3,4) Err(4,4) Next
cell (....)

Additional comments

Why a 3x3 cell size ?

As for the other two methods the optimal cell size is a compromise between the overhead required for each set of cells
(nbits_needed) and the reduction of the range of observed values within a cell.

The smaller the cell, the smaller the variation of the field inside the cell, the smaller the number of bits needed to represent the
variation, yielding more compression. But then we need more cells, adding a fixed per-cell overhead.

Empirical tests have shown that 3x3 the cell size that gives the best average compression, although there was not a big
difference with a 4x4.

Worst Case Scenario :

All the 3x3 cells have values that cover the maximum possible range of the field, which is nbits + 2 (nbits + 1 because of the
error + 1 sign bit). In that situation we observe an expansion of the field, due to the increased number of bits and the overhead
of having to include for each 3x3 set the nbits_needed field. This overhead is 4 or 5 bits per 3x3 cell. For a 16 bit 1000x1000
field, the overhead would be roughly 1000000 * 4 / 9 + 16*1000000*(18/16) ≈ 18445000 bits, an increase of 15 %.

Whenever the compressed buffer is larger than the original, an error code is returned to the calling routine so that the field is
written to the file in its original state (ie uncompressed).

Version : 05/05/2006 Page 16 of 17

word 0 1
bits 0 8 16 24 0 8 16 24
token nbits Fld(2,2) Fld(3,2) Fld(4,2) Fld(2,3) Fld(3,3) Fld(4,3)

Best Case Scenario :

The size if the field in bits is roughly3 nbits*(ni + nj – 1) + 4*(ni*nj/9). If nbits = 16, ni=nj=1000, then the compressed stream
size is of the order of 476500 bits, yielding a compression ratio of 16000000/476500=33.5. If nbits=12, this ratio becomes
12000000/476500 = 25.2.

Average scenario :

This method yields on average an increase of 15 % in the compression ratio, compared to the bicubic method, and 40 %
compared to the minimum method.

The NBITS_NEEDED parameter :

As in the minimum method, this field takes 4 bits, and hence has a range from 0-15. To accomodate the cases when 16-bits are
needed, we decided to use 16 bits when NBITS_NEEDED is 15 or 16. As mentioned above, this field can be expanded to 5 bits
if the prediction errors exceed the 16-bit range (ie greater than 65535).

3 The exact value depends on the size of the grid. There might be an extra cell added in each dimension.

Version : 05/05/2006 Page 17 of 17

	The new FST compression algorithms
	Introduction
	The minimum tile method
	Adjustment of grid boundaries
	Additional comments and observations
	Why a 5x5 cell size ?
	Worst Case Scenario :
	Best Case Scenario :
	Average scenario :
	The NBITS_NEEDED parameter :

	The bi-cubic sample tile method
	An additional optimization
	Interpolation steps
	Adjustment of grid boundaries
	Stabilization of the bi-cubic predictor
	Additional comments
	Worst Case Scenario :
	Best Case Scenario :
	Average scenario :
	The NBITS_NEEDED parameter :
	Minimum grid size :

	A practical example
	The Lorenzo predictor tile method
	Additional comments
	Why a 3x3 cell size ?
	Worst Case Scenario :
	Best Case Scenario :
	Average scenario :
	The NBITS_NEEDED parameter :

