CHAPTER 11

THE FIRST PRINCIPLE OF THERMODYNAMICS

2.1. Internal Energy

Let us consider a system which undergoes a change while contained in an adiabatic
enclosure. This change may be brought about by different processes. For instance,
we may increase the temperature T, of a given mass of water to a temperature 7, > T
by causing some paddles to rotate in the water, or by letting electrical current pass
through a wire immersed in the water. In both cases external forces have performed
a certain amount of work upon the system.

Experience shows that the work done by external forces adiabatically on the system
A,4 (that is, the system being enclosed in adiabatic walls) in order to bring about a
certain change in its state is independent of the path. In other words, 4,4 has the same
value for every (adiabatic) process causing the same change, and it depends only on
the initial and final states of the system. A, can therefore be expressed by the difference
in a state function:

A= 4U (D

and this function U is called the internal energy of the system. It follows that for a
cycle, 4,4=0, and that for an infinitesimal process 64,,=dU is an exact differential,
which can be expressed by

du = (ﬁ) dx + (F—U) dy (2)
cX/y aY /x

as a function of whatever independent variables X, Y are chosen.

The internal energy is defined by (1) except for an arbitrary constant that may be
fixed by choosing a reference state. This indetermination is not important, because
Thermodynamics only considers the variations in U rather than its absolute value.
However, in order to have a unique constant, it is necessary that any state may in
principle be related to the same reference state through an adiabatic process. This can
always be done. As an example, let us consider an ideal gas. Let E; be the chosen
reference state, plotted on a p, ¥ diagram (Figure II-1); C is the curve describing the
states that may be reached from E, by adiabatic expansion or compression. Let us
consider any state E, of the plane pV at the right of C. E, can be reached from E,
by an infinite number of adiabatic paths; for instance, if the gas is held in an adiabatic
container of variable volume (such as an insulating cylinder with a frictionless piston),
it can be made to follow the path E,E' at V'=const., and then E'E, at p=const.,
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\%

Fig. TI-1. Reference state and adiabatic paths.

by having an electric current flow through an inserted resistance while the piston is
first held at a fixed position and then left mobile with a constant pressure upon it.
Or else it can be made to follow the path E,E"” by increasing the pressure (with infinite
slowness) and the E"E, at p=const. (as before for the path E'E)).

The points of the plane pV at the left of C, such as E,, cannot be reached adiabati-
cally from E; it can be shown that this would be against the Second Principle. But
these points can be related to E, be inverting the sense of the process (i.e., reaching
E, from E,).

Thus we can fix the arbitrary constant by choosing a single reference state, and
relating all other states of the system to that one, for which we set U=0 (Figure 11-2).

Reference
State
Uu=0

Agd= U2 Us

Fig. [1-2. Reference state for internal energy.

2.2. Heat

If we now consider a non-adiabatic process causing the same change, we shall find
that the work performed on the system will not be the same:

A#Ay. (3)

We define the heat Q absorbed by the system as the difference

Q=4U—-A4. (4)



I8 ATMOSPHERIC THERMODYNAMICS

Or, for an infinitesimal process:
00 =dU — 64. (5)

In the adiabatic case, 6 Q=0 by definition.

U is a property of the system, and dU is an exact differential. Neither 64 nor 6Q
are exact differentials, and neither A nor Q are properties of the system. In view of the
importance of this basic distinction, we shall make at this stage a digression, in order
to bring in a short review of related mathematical concepts.

Let dz be a differential expression of the type

6z =Mdx + N dy (6)

where x and y are independent variables, and M and N are coefficients which in
general will be functions of x and y. If we want to integrate Equation (6), we shall have
the expressions

J M(x, y) dx, J N(x, y)dy

which are meaningless unless a relation f(x, »)=0 is known. Such a relation prescribes
a path in the x, y plane, along which the integration must be performed. This is called
a line integral, and its result will depend on the given path.

It may be, as a particular case, that

M = ‘f_z, Ne=ZZ. (7)
0x oy
We then have
; 0z 0z
dz=—dx+—dy=d:z (8)
ax oy

and 0z is therefore an exact or total differential, which we write dz. In this case, the
integration will give

Jﬁé:z&hyﬂ—:u“yﬂzd: (9)
1

or else
z=z(x,y)+C (10)

where C is an integration constant. z is then a poinf function which depends only on
the pair of values (x, y), except for an additive constant. When the integral (9) is
taken along a closed curve in the plane x, y, so that it starts and ends at the same point
(runs over a cycle), Equation (9) takes the form

é)ﬂ::ﬂ. “l)
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In order to check if a given expression (6) obeys condition (7), it would be necessary
{0 know the function z. Tt may be easier to apply the theorem of the crossed derivatives

8z B & (12)
dyéx 0xay
(assuming continuity for z and its first derivatives). That is:
oM ON
- S (13)

Equation (13) is therefore a necessary condition for Equation (7) to hold. It is also
sufficient for the existence of a function that obeys it, because we can always find the
function '

-

. v
z :jM dx + ' Ndy— Cﬂ— dx dy + const. (14)
. JJ @y

which, with Equation (13), satisfies Equations (7).

Therefore, Equations (7), (9), (10), (11) and (13) are equivalent conditions that define
z as a point function.

If 6z is not an exact differential, a factor 2 may be found (always in the case of only
two independent variables) such that 26z=du is an exact differential. 4 is called an
integrating factor.*

The importance that these concepts have for Thermodynamics lies in that state
functions like the internal energy are, by their definition, point functions of the state
variables. The five conditions above mentioned for z to be a point function find
therefore frequent application to thermodynamic functions.

On the other hand. as mentioned before, 64 and §Q are not exact differentials.

* These concepts may perhaps become clearer through an elementary example. Let
dz =2y dx + x dy
which we want to integrate between x = 0, y = Oand x = 2, y = 2, and let us choose two arbitrary paths (a)
and (b).
i f?} The path is defined by y = x. Then éz = 3x dx, which is immediately integrable between the two limits,
giving (3/2) x?|2 = 6.
(b) Increase x from 0to 2 at constant v = 0. The integration of 8z along this step will give 0. Then increase y

to 2 while keeping x = 2. This will give 4, which is the total change between the two points, different from the
change obtained in (a).

Aninfinite number of other paths could be devised, with variable results. Obviously, no point function can
be defined from éz.

On the other hand, éz admits an integrating factor ; = x. Thus
x6z = 2xy dx + x? dy = d(x?y),

Which is an exact differential. Its integral between the limits gives (22 % 2) — (0 x 0) = 8. The same resull is

ubtaj.ucd if a line integration is performed along the paths (a), (b) or any other. In this case we have a point
function, which is flx, y) = x2y.
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Thus, an expression like

f

A:-fpdv (15)

&

i
for the work of expansion, is meaningless if it is not specified how p depends on V
along the process.

It is clear, from definition (5) or (4), that exchanging heat is, like performing
work, a way of exchanging energy. The definition gives also the procedure for mea-
suring heat in mechanical units. We may cause the same change in a system by an
adiabatic process or by a process in which no work is performed. In the first case
AU=A,,, and in the second, AU=Q, _,: as AU only depends on the initial and
final states, we have 4,,= 0, .o, which measures Q, -, by the value of 4,,. This
will be clearer by an example. Let our system be a mass of water, which we bring
from 14.5 to 15.5°C. The first procedure will be to cause some paddles to rotate
within the water (as in the classical experiment of Joule) with an appropriate mechani-
cal transmission; 4,, may then be measured by the descent of some known weights.
The second procedure will be to bring the water into contact with another body at a
higher temperature, without performing any work ; we say, according to the definition,
that Q, -, is the heat gained by our system in this case. If we refer these quantities
to one gramme of water, Q, _, is by definition equal 1o | cal, and A4,; will turn out
to be equal to 4, 1855 J. This value is usually known as the mechanical equivalent of
heat; it amounts to a conversion factor between two different units of energy.

The determination of Q for processes at constant volume or at constant pressure,
in which no work is performed upon or by the system except the expansion term
(when pressure is kept constant) has been the subject of Calorimetry. Its main
experimental results can be briefly summarized as follows:

(1) Tfin a process at constant pressure no change of physical state and no chemical
reactions occur in a homogeneous system. the heat absorbed is proportional to its
mass and to the variation in temperature:

60, =c.mdT (16)
where the subindex p indicates that the pressure is kept constant, and the propor-
tionality factor ¢, is called the specific heat capacity (at constant pressure). The pro-
duct c,m is called the hear capacity of the system.

Similarly, at constant volume:

00, =cmdT. (17)

(2) If the effect of the absorption of heat at constant pressure is a change of physical
state, which also occurs at constant temperature, Q is proportional to the mass that
undergoes the change:

6Q = ldm. (18)

The proportionality factor / is called the /atent heat ol the change of state.
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(3) If the effect of the absorption of heat. either at constant pressure or at constant
volume, is a chemical reaction. Q is proportional to the mass of reactant that has
reacted and the proportionality factor is called the hear of reaction (referred to the
number of moles indicated by the chemical equation) at constant pressure, or at
constant volume, according to the conditions in which the reaction is performed.
Heats of reaction have a sign opposite to that of the previous convention, i.e. they
are positive if the heat is evolved (lost by the system). We will not be concerned with
chemical reactions or their thermal effects.

The specific heat capacity and the latent heat may be referred to the mole instead
of to the gramme. They are then called the molar heat capacities (or simply heat
capacities) (at constant pressure C,, and at constant volume C,) and the molar heat L of
the change of state considered. In this case, formulas (16)~18) become”

30, = C,ndT (16))
50, = CyndT (17)
50 = Ldn (18)

2.3. The First Principle. Enthalpy

The equation
dU =34 + 6Q '(19)
is the mathematical expression of the First Principle of Thermodynamics.* When
applied to an isolated system (d U/=0). it states the principle of conservation of energy.
We have used the ‘egotistical convention” in defining 4 as the work performed on
the system. It is also customary to represent the work done by the system on its
surroundings by W. Obviously, A= —W.

In the atmosphere we shall only be concerned with one type of work: that of
expansion. Therefore

0A= —pdV. (20)

It is convenient to define another state function, besides U: the enthalpy H (also
called heat content by some authors)

H=U+ pV.

Introducing these relations, we shall have as equivalent expressions of the first
principle:

dU =4Q — pdV (21)
dH = 4Q + v dp (22)

* We prefer the more appropriate denomination of ‘Principles’ to that commonly used of ‘Laws’.
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or their integral expressions

AU—_-Q—deV (23)

»

AH=Q+J V dp. (24)

The same expressions will be used with small letters when referred to the unit mass:
du =0 — pdv (25)
etc.

We must remark that Equation (20), and therefore Equations (21) and {22), assume
the process to be quasi-static, if p is to stand for the internal pressure of the system.
Otherwise, p is the external pressure exerted on the system.

2.4. Expressions of Q. Heat Capacities

Let us consider first a homogeneous system of constant composition. [f we now write
80 from Equation (21) or (22), and replace the total differentials dU, dV, d/f and
dp by their expressions as functions of a chosen pair of variables, we find.

. 7 i

Variables T, V: 480 = (2(—;) dT + [(6_{.) + p|dV (26)
aT /v oVt |

0 % [ (U Gl
Variables T, p: 0Q = [(ﬂ) + p(ﬁ) ]dT + (b—li) + p(r—) :Idp
6T/ aT/» [\dp /1 ap /T

(27)

Variables T, p: Q0 = (i—H) dT + |:(-(f—1) — ¥V |dp. (28)
T P op/r |

Equation (27), as well as others that can be derived in a similar way, will be of no
particular value to us, but it illustrates, by comparison with Equations (26) and (28),
the fact that simpler expressions are obtained when the function U is associated with
the independent variable ¥ and when H is associated with p.

For a process of heating at constant volume, we find from Equation (26):

0Qv

cy =% _ (i) (29)
dT 0T /v
or
g (ﬂ) . (29)
aT )
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And for constant pressure, from Equation (28):

o e
(}=%5=G?) (30)
dT 0T /e

oh
T el 30
’ (ar)p -

The expressions of § Q also allow us to give values for the heat of change of volume,
and of change of pressure, at constant temperature. From Equation (26):

5
dv av /

and

and from Equation (28):
s _(aH) _,
dp ép/T ‘

:2.5, Calculation of Internal Energy and Enthalpy

Equations (29) and (30) can be directly integrated along processes at constant
volume and at constant pressure, respectively, to find Uand H, if C, and C,, are known
as functions of T

U= I C,dT + const. (at constant volume) (31)

H :J C,dT + const. (at constant pressure) (32)

C, and C,, as determined experimentally, are usually given by polynomic expressions,
such as
C=a+fT +9T% + ... (33)

for given ranges of temperatures.

The calculation of U and H for the general case when both 7 and V (or T and p)
change must await consideration of the Second Principle (cf. Chapter III, Section 8).

Let us now consider two rigid containers linked by a connection provided with a
stopcock. One of them contains a gas and the other is evacuated. Both are immersed
ina common calorimeter. If the stopcock is opened, so that the gas expands to the total
volume, it is found that the system (gas contained in both containers) has exchanged no
heat with its surroundings. As there is no work performed (the total volume of the
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system remained constant), we have*:
0=0; A=0; AU =0.

Actually this experiment, which was performed by Joule, was later improved by
Joule and Thomson, who found a small heat exchange (Joule-Thomson effect).
However, the effect vanishes for ideal gas behavior. In fact, if the equation of state
pV=R*T is accepted as the definition of ideal gas. it may be shown, with the aid of
the second principle. that this must be so**. Therefore the previous result is exact for
ideal gases. As pchanged during the process, we conclude that U for anideal gasisonly a
function of T

U=UT)

and the partial derivatives of the previous formulas become total derivatives:

dU du
(34 Cy=—: €, =—. 34")
) Vodr dT ¢
Similarly, H=U+pV=U+ R*T=H(T): therefore
(35) g = . 44 (35')

= H C,=— >
Poodr P .dT

* Asthe gas in the container, where it was originally confined, expands into the other, work is done by some
portions of the gas against others, while their volumes are changing. These are internal transfers not to be
included in A. This is an example demonstrating that systems must be defined carefully and clearly when
considering a thermodynamic process; the system in this case is best defined as all the gas contained within the
two containers (whose total volume is constant).
** |t will be seen (Chapter III, Section 5) that for a reversible process
dv

dU=TdS — pdV =TdS — R*T—V
where § is the entropy. Dividing by T:

dU

?=d5— R*dlIn V.

dS is an exact difTferential, by the Second Law, and so is the last term. Therefore (dU/T) is also an
exact differential, which may be written (by developing dU):

av_1fau) (o
T T JaT T\ op po'

Applying to (dU/T) the condition of cquality of crossed second derivatives

1 3y 1 feu | 82U
}ﬁpﬂT S -T_z(ﬁp )1— ¥ -TZGTGP
or
auy
-
and

U =u(m.
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It can readily be derived that
(36) C,—C,=R*; ¢, —¢c,=R. (36"

Heat capacities of gases can be measured directly, and the corresponding coefficients
for introduction into Equation (33) can be determined experimentally in order to
represent the data over certain temperature intervals. For simple gases as N, O,, Ar,
however, the data are nearly constant for all the ranges of temperature and pressure
values in which we are interested. This agrees with the theoretical conclusions from
Statistical Mechanics, which indicate the following values (*):

Monatomic gas: C,=3R*; C,=C,+ R*=4R"
Diatomic gas: C,=45R*; C,=3R"*.

We shall define the ratio coefficients
® = R"'/Cp = R/c,; n=C,/C, = c,le,.

For dry air, considered as a diatomic gas (neglecting the small proportion of Ar,
CO,, and minor components), we should expect:

x, = 2/7=0.286; n,=7/5=1400
¢,,=718Jkg 'K ' =171 calkg”'K™*
Cpa=1005J kg 'K ! =240calkg "K'

These values are in good agreement with experience, as can be seen from the values of
€pa from Table 1I-1.

* According to the principle of equipartion of energy, the average molecular energy is given by

F = rkT)2 T e

where r is the number of squared terms necessary to express the energy:
r
£ = E!IAIC?
1

k is Boltzmann's constant, A, are constants, and &; are generalized coordinates or momenta. If no po-
tential energy has to be considered, the &; are all mcmenta and the number r is equal to the degrees of
freedom of the molecules, as the number of generalized coordinates needed to determine their position:
3 for a monatomic gas, and two more (angular coordinates to give the orientation) for diatomic mole-
cules; it is here assumed that the effect of vibration of the diatomic molecules may be neglected, which
is true for N; and O, in the range of temperatures in which we are interested.

U= Nz = gR’T

dU r

— e

C““ur 2

(N, = Avogadro's number).
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TABLE 11-1
€py in ITcal kg™! K~

p(mb) 1(°C)
— 80 4l 0 + 40
0 2394 239.5 239.8 240.2
300 2399 239.8 2399 240.3
700 240.4 240.1 240.1 240.4
1000 241.0 240.4 240.3 240.6

For simple ideal gases in general, and for a wide range of temperatures, the specific
heats can be considered as constant, and the expressions of the internal energy and the
enthalpy can be obtained by integrating Equations (34) and (35):

U=C,T +a (37
H=C,T +a. (38)

Taking H— U, and noticing that

(C,—CIT =R*T =pV .
it may be seen that the additive constant a, although arbitrary, must be the same for
both functions.

Within this approximation, the two expressions (21) and (22) of the First Principle
may be written as

0Q =C,dT + pdV (39)
and

8Q = C,dT — Vdp. (40)

2.6. Latent Heats of Pure Substances. Kirchhoff’s Equation

In general, from the expressions (21) and (22) of the First Principle, we can see that
the heat absorbed by a system in a reversible process at constant volume Q, (the
subscript indicating the constancy of that variable) is measured by the change in
internal energy and the heat at constant pressure @, by the change in enthalpy:

00, =dU (41)
0Q, =dH . (42)

In the case of homogeneous systems, these formulas would givedU = nC,dT = me,dT
and dH = nC,dT = mec,dT (cf. Equations (39) and (40)). However, we are now interes-
ted in changes of phase. As we shall see later. only one independent variable is left
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for a system made out of a pure substance, when two phases are in equilibrium. Thus
if we fix the pressure or the volume, the temperature at which the change of physical
state may occur reversibly is also fixed, and the specific heats need not be considered
in these processes.

The latent heats are defined for changes at constant pressure. Therefore, in general

L=A4H (43)
or
I = dh. (43"

In particular L may be L, L,, L,=molar heats of fusion, vaporization, sublimation.
Similarly / can be any of the latent heats [, /,, /..
It is of interest to know how L varies with temperature. We may write

5 GF
dH = (ﬁ) dT + (‘" ') dp (44)
OT p Ep T

for two states, @ and b, such that AH=L=H,— H,. Taking the difference of both
exact differentials, we have

dc'AH;=(Cf1H) dr +("‘4H) dp. (45)
T /p f‘p T

o)

If we now assume that p is maintained constant, only the first term on the right is left,
and we have

d(4H), =dL = (MH) dT = (“—H") 4T ("’H") dT = (G, — €, )dT
P P /P

.aT cT i

or
(6L{0T), = AC,. (46)

This is called Kirchhofl’s equation. If the heat capacities are known as empirical
functions of the temperature expressed as in Equation (33), L can be integrated in the
same range as

L=JAdeT

=L3+AIIT+_1_

A‘BT3+%T3+.” (a7)

where L is an integration constant. and the 4 are always laken as dilferences between
phases @ and b.

The physical sense of Kirchhofl’s equation may perhaps become clearer by consider-
ation of the cycle indicated below. By equating the change in enthalpy from a to b at the
temperature T for the two paths indicated by the arrows, Equation (46) is again
obtained.

It may be remarked that Kirchholl's equation holds true also for reaction heats
in thermochemistry, and that another similar equation may be derived for the change
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a L b
T;p: =
Cpg dT —Cpb daT
L+(d>L/>T)dT
TedTp: (>dL/d }p

in heat of reaction or of change of physical state with temperature at constant volume,
where the internal energy U and the heat capacities at constant volume C, play the
same role as / and C, in the above derivation:

(‘a‘f;) = AC,. (48)
o Al

It should be remarked that the variation of L with T alone, i.e., while keeping p
constant, cannot correspond to changes in which equilibrium conditions between the
two phases are maintained. This would require a simultaneous variation of pressure,
related to the temperature by the curve of equilibrium for the change of phase. To treat
this problem requires the help of the Second Principle; this will be done in Chapter IV,
Section 8, where the last term on the right in Equation (44) will be calculated. For
vaporization and sublimation, however, it will be shown that this term is entirely
negligible, while for fusion it should be taken into account, according to the formula

dL, E: T [éaV
dT o T[ AV( oT )p] o
where AV = Viiguia — Veotia-

2.7. Adiabatic Processes in Ideal Gases. Potential Temperature

Considering Equations (39) and (40) we may write, for an adiabatic process in ideal
gases:
00=0=C,dT + pdV =

=C,dT — Vdp. (50)

Dividing by T and introducing the gas law we derive the two first following equations:
0=C,dinT+R*dIn¥V
=C,dInT — R*dInp

=C,dinp4+ C,dInV. (51)

The third equation results from any of the other two by taking into account that
dlnp+dIn¥V=dInT (by taking logarithms and differentiating the gas law) and
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Equation (36). Integration of-the three equations gives
TSVR = const.
TSp * = const. (52)

pS Ve = const,

Or, introducing the ratios x and n:
TV~ ! = const.
Tp™* =const. (53)
pV" = consL.

These are called Poisson’s equations. They are equivalent, being related one to the
other by the gas law. The third equation may be compared with Boyle's law for
isotherms: pV =const. In the p, V' plane the adiabats (curves representing an adiabatic
process) have larger slopes than the isotherms, due to the fact that > 1. This is shown
schematically in Figure I1-3b. Figure 11-3a shows the isotherms and adiabats on the
three-dimensional surface representing the states of an ideal gas with coordinates
p, V, T. Projections of the adiabats on the p, Tand V, T planes are given in Figure [1-3c¢
and d, which also indicate the isochores and isobars.
If we apply the second Equation (53) between two states, we have:

To., (&) . (54)
T \p
If we choose p, to be 1000 mb, 7, becomes, by definition, the potential temperature 6.
1000 mb \* ;
0=T (—m) . (55)
P

The potential temperature of a gas is therefore the temperature that it would take if
we compressed or expanded it adiabatically to the pressure of 1000 mb. We shall see
that this parameter plays an important role in Meteorology.

The importance of potential temperature in meteorological studies is directly
related to the fundamental role of adiabatic processes in the atmosphere. If we restrict
our attention to dry air, we may assert that only radiative processes cause addition
to or abstraction of heat from a system consisting of a unique sample of the atmo-
sphere. In general, however, we must deal with bulk properties of the atmosphere, i.¢.,
averaged properties, and in such an open system we recognize that three-dimensional
mixing processes take place into and out of any system moving with the bulk flow.
To this extent, then, we must add turbulent diffusion of heat to our non-adiabatic
processes. Nevertheless, except in the lowest 100 mb of the atmosphere, these non-
adiabatic processes are relatively unimportant and it is generafly possible to treat
changes of state as adiabatic, or at least as quasi-adiabatic.
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(b)

(C)

Fig. 11-3. Thermodynamic surface for ideal gases and projections on p, ¢; p, Tand v, T planes.

As can be seen from Equations (54) and (55), 0 is a constant for an insulated gaseous
system of fixed composition, i.e., for an adiabatic process. This constant may be used
to help specify a particular system, such as a volume element of dry air. Its value does
not change for any adiabatic process, and we say that potential temperature is con-
served for adiabatic processes. Conservative processes are important in Meteorology
since they enable us to trace the origin and subsequent history of air masses and air
parcels, acting as tags (or tracers). If air moves along an isobaric surface ( p constant),
the temperature of the air sample will not change, if no external heat source exists.
In general, air motion is very nearly along isobaric surfaces, but the small component
through isobaric surfaces is of great importance. If the pressure of an air sample
changes, then its temperature will change also, to maintain a constant value for the
potential temperature. Changes of pressure and temperature will have the same signs;
thus adiabatic compression is accompanied by warming and adiabatic expansion by
cooling. Adiabatic compression, with pressure increasing along a trajectory, usually
implies that the air is sinking or subsiding or descending (all these terms are employed
in Meteorology), whereas adiabatic expansion, with the pressure on an air sample or
element decreasing with time, usually implies ascent.
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During adiabatic ascent, as the temperature falls the relative humidity rises (if the
air contains any water vapor). Eventually a state of saturation is reached and further
ascent causes condensation, releasing the latent heat of condensation which tends to
warm the air and to change its potential temperature. Strictly speaking, this is still
an adiabatic process, since the heat source is internal rather than external to the system.
However, it is clear that our formulation of the first law for gases is no longer valid if
phase changes occur. It is for this reason that the potential temperature is not conser-
vative for processes of evaporation or condensation, regardless of whether the heat
source (for the latent heat) is internal or external (for evaporation from a ground or
water source, for example). We shall see later that the presence of unsaturated water
vapor has no significant effect on the conservation of the (dry air) potential tempera-
ture.

For a non-adiabatic process, it is possible to evaluate the change in potential
temperature to be expected, since by definition the potential temperature cannot be
conserved during non-adiabatic processes. Let us take natural logarithms of Equation
(55), and then differentiate:

dinff=dInT —xdlInp. (56)

Using Equations (51) and (55), we obtain

30 =C,Tdinf=C, (ﬁ) do. (57)
Po

These are, of course, merely additional formulations of the First Principle, for ideal
gases.

2.8. Polytropic Processes

Although vertical motions can be generally considered to be adiabatic, thereis a special
type of situation where this approximation ceases to be valid. This is when very slow
motions of horizontally-extended atmospheric layers are associated with some
exchange of energy by radiation; the problem will be considered in Chapter V11, Section
11. Here we point out that such a process can be approximated by writing

80 =CdT or d6q=cdT (58)

with a constant C or ¢, which can be called the polytropic molar or the polytropic
specific heat capacity, respectively, associated with the process. By definition this is
called a polytropic process.

Instead of (5), we must now write

C,dT + pdV =C,dT — Vdp = CdT (59)
or

(C, — C)dT + pdV = (C, — C)dT — Vdp = 0. (60)
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Repeating the derivation that led to (53), we find now:

TV® ! = const.
Tp~* = const. (61)
pV" = const.

where the ‘polytropic exponent’

_CP—C_CP—C
0= T g ~E

n

replaces # in the previous formulas and

replaces k in the previous formulas.

Any of the parameters ¢ (or C), n and k can be used to characterize the polytropic
process. We can easily see that, as particular cases, C=C,orn=0or k= —
corresponds to an isobaric process; C=o0 or n= 1 or k=0
corresponds to an isothermal process; C =0 or n = n or k = x corresponds to an
adiabatic process; and C = C, or n= oo or k=1 corresponds to an isochoric
process.

PROBLEMS

1. Calculate A and Q for an isothermal compression (isothermal change, which may
or may not be brought about by an isothermal process) of an ideal gas from
A; to A; (see Figure) for each of the four following processes:

F%.'ﬂ

A;




THE FIRST PRINCIPLE OF THERMODYNAMICS 33

(a) isothermal reversible compression.

(b) sudden compression to p..,=p; (e.g. dropping a weight on the piston of a
cylinder containing the gas) and the subsequent contraction.

(c) adiabatic reversible compression to p; followed by reversible isobaric cooling.

(d) reversible increase of the temperature at constant volume until p =p;, followed
by reversible decrease of temperature at constant pressure until V= V.

Pexy denotes the external pressure applied to the system.

. A dry air mass ascends in the atmosphere from the 1000 mb level to that of

700 mb. Assuming that it does not mix and does not exchange heat with its

surroundings, and that the initial temperature is 10°C, calculate:

(a) Its initial specific volume.

(b) Its final temperature and specific volume.

(c) Its change in specific internal energy and in specific enthalpy (in J kg~
cal g7 ).

(d) What is the work of expansion done by 1 km® of that air (volume taken at
initial pressure)?

(e) What would the specific enthalpy change have been, for an isobaric cooling
to the same final temperature, and for an isothermal expansion to the same
final pressure?

(f) Compute (a), (b) and (c) for pure Ar, instead of dry air. (Atomic weight of
Ar: 39.95.)

. The figure represents an insulated box with two compartments 4 and B, each

containing a monatomic ideal gas. They are separated by an insulating and per-

fectly flexible wall, so that the pressure is equal on both sides. Initially each com-
partment measures one liter and the gas is at | atm and 0°C. Heat is then supplied
to gas A (e.g. by means of an electrical resistance) until the pressure rises to

10 atm. Calculate:

(a) The final temperature Tj.

(b) The work performed on gas B.

(c) The final temperature T,.

(d) The heat Q, absorbed by gas A.
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4. Consider one mole of air at 0°C and 1000 mb. Through a polytropic process,
it acquires three times its initial volume at 250 mb. Calculate:
(a) The value of » in pV™=const.

(b) The final temperature.

(c) The change in internal energy.

(d) The work received by the gas.

(e) The heat absorbed by the gas.

Consider that the air behaves as an ideal gas.

5. One gram of water is heated from 0 to 20°C, and then evaporated at constant
temperature (at the vapour pressure of water corresponding to that temperature).
Compute,incal g *andcal g7 K%,

(a) Au
(b) Ah
(c) The mean value of c,, between 0 and 20°C, knowing that

lyo.c=5973calg™, I,00c=5860calg™?, ¢,=1.00calg”'K™!

(e, specific heat capacity of water vapor at constant pressure; c,: specific heat
capacity of liquid water).

Note-Assume that any variation in pressure has a negligible effect and that water
vapor behaves as an ideal gas.



