CHAPTER III

THE SECOND PRINCIPLE OF THERMODYNAMICS

3.1. The Entropy

The first principle of thermodynamics states an energy relation for every process
that we may consider. But it does not say anything about whether this process might
actually occur at all. It is the second principle that faces this problem and provides
at the same time a rigorous criterion to decide when a system is in a state of thermo-
dynamic equilibrium.

Thermodynamic processes may be classified into three categories: natural,
impossible or antinatural and reversible.

Natural processes are always in greater or lesser degree, irreversible, and the direc-
tion in which they occur is obviously towards equilibrium, by definition of equili-
brium. Expansion of a gas into a vacuum, heat conduction through a finite tempera-
ture gradient, combination of oxygen and hydrogen at room temperature producing
water, diffusion of one gas into another under a finite concentration gradient, freezing
of supercooled water - these are examples of natural, irreversible processes. We
might imagine the reverse processes: contraction of a gas under no external pressure,
heat flowing from one body to another at a higher temperature, etc. But these, as well
as other more complicated processes whose absurdity would seem less obvious, are
impossible in nature; their impossibility is prescribed by the second principle.

Natural processes may produce opposite changes in a system, depending on the
external conditions. We can, in general, reduce the irreversibility of these processes
by modifying their paths so that the difference between the actual values of the state
variables and the values that would correspond to an equilibrium state is reduced
through all the stages of the process. If we continue doing this indefinitely, we tend
to a common limit for processes producing either one change or its opposite. This
limit is called a reversible process, as we have already seen in Chapter I, Section 8.
A reversible process is thus an ideal limit, which cannot actually be realized but to
which one can approximate indefinitely, and may be defined as a series of states that
differ infinitesimally from equilibrium and succeed each other infinitely slowly,
while the variables change in a continuous way. As it may be noticed, we have assumed
that, according to experience, the rate of the process tends to zero as the conditions
tend to that of equilibrium.

Referring to the previous examples, expansion of a gas with pressure p against an
external pressure p—dp. heat conduction along an infinitesimal temperature gradient,
etc., are reversible processes. By reversing the sign of the infinitesimal difference
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from equilibrium conditions (replacing dp by —dp, d7/dx by —dT7/dx, etc.), the
reversible process of the opposite sense will occur.

We make now the following statement: for every reversible process there is a positive
integrating* factor 1/t of the differential expression 8(Q, which is only dependent on
the thermal state and which is equal for all thermodynamic systems. A state function
S is thus defined (cf. Chapter I, Section 2), the entropy, by the exact differential dS:

dsz(‘j—Q) : (D)
T /Jrev

We further state that for irreversible processes

dS:>(5—Q) . (2)
T Jirr

So that for any process we may write

ds = (@) 3)

T

and the inequality and equality symbols shall always correspond to irreversible and
reversible processes, respectively. This formula is the mathematical expression of the
second principle of thermodynamics.

It may be shown that 7 turns out to be proportional to the absolute ideal gas tem-
perature in all its range of validity, and as the proportionality factor is arbitrary,
the simplest choice is to take T=T7. We shall now consider this problem.

3.2. Thermodynamic Scale of Absolute Temperature

Let us first consider a Carnot cycle performed by an ideal gas. The cycle is reversible
and consists of two isotherms, at temperatures 7, and T, <T,, and two adiabats
(Figure III-1).

Let us compute the work 4 and the heat Q for the four steps (in the sense indicated
by the arrows):

B
(1) AU, =0; QI=—A]=fpdV=HR*TI lnE
< A
(11 OQu=0; —An=—AUy=C(T, — T)
* Ve
(]ll) AU”]:O; Q2 = — A"|= — nR Tz In—
Vo
(1v) Qw=0; — Ay =— AUy = — G (Ty— T3).

* It might have been taken negative. This is a matter of convention.
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Fig. 11I-1. Carnol’s cycle.

The sum of the four terms AU is zero, as it should be for a cycle. The work terms in
the two adiabats cancel each other. The gas absorbs the quantity of heat @, >0 from
the hotter reservoir and rejects @, <0 to the colder one. Furthermore, from Poisson’s

relations
£~
TZ VB V.ﬁ

ValVa = VclVp 4)

we derive

which, introduced in the expressions for Q, and Q,, gives:
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The application of Equation (1) to the same cycle would give, considering that t
must remain constant in each isotherm:

% 4 % =0 (6)
T, T3

or
19 _% ()

0, 1'1-
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Therefore, if we write
—_ =, (8)

Equation (1) is obeyed.

This shows that T must be taken as proportional to 7 (absolute ideal gas temperature
as defined in Chapter I, Section 5) for the ideal gas of the Carnot cycle.

In order to generalize this result, we should follow the usual procedure by which
the mathematical expression of the second principle is shown to derive from physical
considerations based on the impossibility of a perpetuum mobile of the second kind
(cf. Section 4). As a first step, we should show that Equation (4) is also valid for any
reversible cycle performed between two heat sources 7, and T,, independently of the
nature of the cycle and of the systems (Carnot’s theorem), while for an irreversible
cycle, (Q,/T,)+(Q,/T3)<0. Finally we might show that any other cycle may be
decomposed into, or referred to, a number of Carnot cycles (reversible cycles between
two isotherms and two adiabats performed by any fluid), which is made to tend to
infinity if the temperature varies continuously for the main cycle. We shall omit here
these derivations, for which we refer to any good textbogk on gencral thermodynamics.
We shall only quote the final result, which is the formula

fie

where the circle in the integral sign indicates that it refers to a cycle and the inequality
sign corresponds, as always, to the irreversible case. And, as from Equation (3) it
follows that in every case

™

E#:@a;o (10)

T

we conclude that 7 is always proportional, and may be put equal, to 7:
t=T. (11)

The equality is achieved by choosing again the value 273.16K for the reference state,
namely the triple point of water. We have now the thermodynamic or Kelvin scale
of temperature defined by

T = 273.16 101 (12)
f

where Q, is the heat taken from, or given to, a source in thermal equilibrium with the
triple point of water, in a reversible cycle between this source and any other one, to
which correspond the values Q and 7. As the cycle can be performed, in principle,
by any system, this definition of temperature is completely general, covering any
possible thermal states, and coincides with the ideal gas absolute temperature for
all the range covered by this one.
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3.3. Formulations of the Second Principle

We shall, therefore, write the second principle as

ds = @ (13)
T

The entropy is thus defined (through Equation (13) with the equality sign, for
reversible processes) as a state function and, just as in the case of the internal energy,
it has an arbitrary additive constant. This constant can be fixed by choosing a reference
state for which we write S=0. The third principle of thermodynamics provides an
absolute reference state (temperature of zero Kelvin for all perfect crystalline solids),
but its study, essential in chemical thermodynamics, can be omitted in this book of
applications to the atmosphere.

It should be remarked that, as was the case for pressure, the temperature of the
system is not defined for irreversible processes. The meaning of T in this case is the
temperature of the heat sources in contact with the system.

Other expressions of the second principle for particular cases are:

finite process: AS 2J % (14)
adiabatic process: ds=0 (15)
isentropic process: 0=060 (16)
finite isothermal process: A4S > % (17)
cycle: Eﬁa?gé 0. (18)

Their derivation from Equation (13) is trivial. Equation (15) tells us that if a process
is adiabatic and reversible, it is also isentropic.

If in any process we consider a larger system including the primitive system plus
all the bodies with which it exchanged heat, the process becomes adiabatic for the
total system and, according to Equation (15), dS,,,,;=0. In that sense it is sometimes
said, rather loosely, that the entropy ‘of the universe’ increases in every natural process.

3.4. Lord Kelvin’s and Clausius’ Statements of the Second Principle

If we consider a system performing a cycle in such a way that at the end it has ex-
changed heat with only one source 7, Equation (18) gives

Q

=
T

and, as 7>0, 0<0. On theother hand, from the first principle it follows that A = — Q.
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It is, therefore, impossible to construct a cyclic device that will produce work (4 <0)
and no other effect than the cooling of a unique heat source (Q >0). This impossibility
of a “perpetuum mobile of the second kind” is Lord Kelvin's statement of the second
principle.

If we now consider a system performing a cycle between two sources T, and T, < T,
without any production or consumption of work, we shall have

© 1%

T, T,
but by hypothesis and the first law (4=0, 0, + 0,=0), 0, = — 0, = Q. It follows that
0=0,20 (and Q,<0). Therefore, it is impossible to construct a cyclic device that
will produce the sole effect of transferring heat from a colder to a hotter reservoir.
This is Clausius’ statement of the second principle.

Therefore these two traditional statements, which are alternative bases for the

development of the second principle and its applications, appear as immediate
consequences of the mathematical formulation in Equation (13).

3.5. Joint Mathematical Expressions of the First and Second Principles.
Thermodynamic Potentials

By introducing Equation (13) in the expressions of the first principle (Chapter II,
Section 3) we obtain

dU < T dS + 64 (19)
and for the case in which 4= —pdV:

dU<STdS — pdV (20)

dH<TdS + Vdp. (21)

In the last two expressions, U and H appear as functions of S and V, and S and p,
respectively, as independent variables. It is also convenient to have general expressions
where the pairs 7, V and 7, p appear as the independent variables. Two new state
functions are defined with that purpose:

Helmholtz function or free energy* =F=U - TS (22)
Gibbs function or free enthalpy™ =G=H-TS
= U + pV — TS. (23)

Both functions are also called thermodynamic potentials. By differentiating F

* These are the denominations and symbols recommended internationally. Helmhotz function has
also been called work function and represented by the letter A. Gibbs function has also been known
as the free energy and represented by F. Thus Helmholtz function is sometimes referred to as Helmholtz
free energy, in order to avoid ambiguity.
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and introducing it in Equation (20), and by differentiating G and introducing it in
Equation (21), two new joint expressions of both thermodynamic principles are
obtained:

dF € — SdT — pdv (24)
dG< — SdT + Vdp. (25)

We shall make use mainly of the last one. In all four Equations (20), (21), (24), (25),
the inequality sign holds for irreversible processes (p is then the external pressure
exerted upon the system, and T the temperature of the heat sources in contact with it)
and the equality sign for reversible processes.

We may summarize these expressions or fundamental equations in the following
table, where U, H, F and G are considered as the characteristic functions:

Characteristic function  Independent variables Fundamental equation

U S,V dUL TdS—pdV

H S.p dH<TdS+ Vdp

F T, ¥ dF € —SdT-pd¥v 26)
G T, p dG< —SdT+ Vdp

We see that these expressions have a helpful symmetry, where the choice of indepen-
dent variables can be represented schematically by

U S H
V P
F T G

Each characteristic function is associated with the two adjacent variables. The con-
venience of these particular associations becomes apparent through the simplicity
of many derivations and the equilibrium conditions. It should be noticed, however,
that this symmetry only holds under the restriction 64 = — pdV; thus, if this restric-
tion was not imposed, we should substitute Equations (21) and (25) by

dH < TdS+ Vdp+ pdV + 64 (27)
dG < — SdT + Vdp+ pdV + 84 (28)

and the advantages of defining H and G would be lost.

All these thermodynamic functions (U, H, S, F, G) are state functions to which the
mathematical concepts reviewed in Chapter II, Section 2 apply. In particular, we can
apply Equations (1) @and (13) from Chapter Il to the differcntial expressions in
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Equations (26). The first ones give:
(G-
éS/v \éS/p
(i) =(E) o i
oT /v 0T /v
(k-G
av/s oV /T

(@)
ap/s ép/T

And applying (Chapter Il - Equation (13)), the so-called Maxwell relations are
obtained:

) _(2), (2 -(2)

(('ﬂ")s (55, v ov /T “\oT v

(%)

ap s

(29)

Il

&y GG
aS /e’ ap Jx oT/p
Other relations could also be obtained by combining Equations (29) and (30).

We could write the mathematical expression of the second principle in Equation (13)
in the alternative way

i 4. 22 (31)
F o
with
50" 20. (32)

With this definition, the inequality sign in the fundamental Equations (26) could
be substituted by the subtraction of Q' from the right hand side; for instance, the
first equation would read

dU=TdS - pdV —60Q’: (33)

0Q" is called Clausius’ non-compensated heat, and gives a measure of the irreversi-
bility of the process.

It should be understood that the set (29) are always true, whether we arc considering
reversible or irreversible processes (both derivatives and right hand sides are state
functions or state variables depending only on the state of the system and not on the
path under consideration), but T and p are defined only in a system in conditions of
equilibrium. Thus in (26), when the process is irreversible and the inequality sign
prevails, T and p represent the temperature of the sources in contact with the system
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and the external pressure on the system. The conditions of irreversibility are established
by the differences between these and the equilibrium values: (T — T,) (thermal irrever-
sibility), (p — p.,) (mechanical irreversibility). If we equate dU given by (33) for an
irreversible path with the first (26) when applied to the same change by a reversible path,
we find

0Q' = (T — T.9) dS + (p — peg) 4V,

which measures the degree of irreversibility for the former process.

3.6. Equilibrium Conditions and the Sense of Natural Processes

Let us consider again the fundamental Equation (20):
TdS =2dU + pdV

and let us assume that we have a closed system in a certain state. We may imagine
that this system undergoes an infinitesimal change, through an arbitrarily chosen
process. We call this a virtual change, and the process that produces it may in prin-
ciple be a natural, impossible or reversible one. To find out which is the case, we
calculate the variations DS, DU and DV (where the differential symbol D rather
than d indicates that the variation is a virtual and not a real one) and we try the
previous equation with these values. If we obtain

TDS>DU+pDV

the process is a natural or spontaneous one. If an equality sign holds, the imagined
process is a reversible one. If the inequality is of an opposite sense, the process is
impossible.

It should be remarked that, although the process investigated may turn out to be
of any kind (reversible, natural or impossible), the actual calculation of virtual
variations of some of the state functions will require consideration of reversible paths.

We may now repeat this procedure with every process that we can imagine. If
none of them are natural (if in every case we obtain signs <), the system is in thermo-
dynamic equilibrium, as all virtual processes turn out to be either impossible or
reversible. It may happen that for some of these processes signs < are obtained, while
for others we find > ; the system is then in equilibrium with respect to the former,
but not to the latter ones. This would be the case, for instance, of ice at a temperature
above 0°C and of water below 0°C; we may have, in both cases, thermal and mechani-
cal equilibrium, but not chemical equilibrium, as the change of physical state will be
a spontaneous process. The ice will actually be melting; the water may remain
indefinitely liquid, but this is a metastable equilibrium (cf. Chapter 1, Section 4).

Tt will be convenient, in general, to apply one or another of Equations (26), im-
posing restrictive conditions to the virtual processes (e.g., that they occur at constant
temperature and pressure). By so doing, we obtain particularly simple conditions
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(e.g., for constant T and p, we should have DG =0 for every virtual process, if the
system is in equilibrium). These are summarized below :

General equation: TdS = dQ or any of Equations (26)
Restrictive conditions: Adiabatic Isentropic process Isothermal process
process ds=0 dT=0
Q=0
Isochoric Isobaric Isochoric Isobaric
dV=0 dp=0 dv=0 dp=0
Resulting equation: dS=0 dUu<0 dH=0 dF=0 dG =0
(from 20) (from 21) (from 24) (from 25)
Equilibrium criterion: DS<0 DU=0 DH=0 DF=0 DG=0

Thus an important use of the thermodynamic potentials, whose differentials are
expressed in terms of the differentials of T, p, V, is to obtain simple criteria for the
natural sense of processes and of thermodynamic equilibrium, convenient for practical
application.

The equations in the table tell us that, if a system is in equilibrium, the function S
is a maximum with respect to any adiabatic change, and that the functions U, H, F, G
are minima with respect to isentropic isochoric, isentropic isobaric, isothermal iso-
choric and isothermal isobaric changes, respectively. There also becomes apparent
the convenience of associating U with S, V, etc.

A simple example will serve to illustrate these ideas. Let us consider a system
consisting of water in the presence of water vapor at pressure p, and let the virtual
process be the condensation of an infinitesimal number n of moles of vapor. It will be
convenient to use the Gibbs function G. In order to calculate DG, we must perform the
virtual change along a reversible path; this can be the isothermal compression of n
moles of vapor from p to the equilibrium pressure p, (saturated vapor pressure), and
then condensation at constant T and p,. In the first step we have:

P= “ Ps
D6~ n-I- Vdp = n.[R*len p=nR*Tinfs.
P

P p

During the second step, D,G = 0, because both T and p, remain constant. We then
bring back the condensed n moles to the original pressure p. This contributes a term

Ps
D;G = nj- Ve dp = nV,(p — p.).

P
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(where V,, is the molar volume of water) which has opposite sign to the previous term
D, G but is much smaller, because ¥, < V (molar volume of vapor); in fact it is quite
negligible. Therefore™:

DG=D,G+D;G>0 ifp<p,

DG=D,G+D;G<0 ifp>p.
In the first case, the process is impossible; in the second one, it is spontaneous. If
we reverse the virtual process, the opposite will be true. We can conclude that only
if p.=p (for which DG=0 in both cases) can there be equilibrium. We can also

conclude that no other equilibrium vapor pressure exists, because only for p=p,
can DG vanish (reversible process).

3.7. Calculation of Entropy

In order to have an expression for d S with coeflicients depending on directly measura-
ble properties, so that we may integrate it to obtain values for finite differences A4S,
we start by expressing dS as a function of T and p as independent variables:

3 5
dS=(£) dT+(£) dp. (34)
T /o dp/t

This may be compared with the joint expression for both principles that uses enthalpy
(Equation (21)):

ds = ai— 2 ap (35)
T T

and developing dH as a function of 7 and p:

dszi(ﬂ) dT+l[(aH) " l":|dp. (36)
r\ark T \ép/r

Comparison of the coefficients of d7" in Equations (34) and (36) shows (d7 and dp
being independent, we may compare for dp=0):

() -4{at -8
iT/e T\eT/e T

(cf. Chapter II, Section 4).

* This can be demonstrated simply in the critical case of p, approximately equal to p, for which D, G becomes,
on expansion of the natural logarithm,

D, G=nR*TIn(p/p)=nlpln (1 i E’;_p)
=nV{(p,—p) +...}.

Hence
DG =nip,—p)(V—V,)+ ...
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The variation of § with p at constant 7 is given by one of Maxwell’s relations
(Equations (30)):

-
ﬁp b i oT p
This derivative is directly measurable, and is usually expressed as the isobaric expan-

sion coefficient (1/V) (éV/éT),=u,.
We have thus the expression

C

dSE—"dT—(eV

=

T

) dp=C,dInT — Va, dp (39)
T P

that can be applied conveniently to the computation of entropy changes. A similar
expression can be derived as a function of 7 and V¥, by introducing U instead of H
(therefore using Equation (20) rather than (21)) and following a similar derivation.
This gives

(&)

dS=_*dT+(é—p) dV=C,dInT + px, dV (40)
T aT /v

where o, =(1/p) (ép/éT), is the isochoric coefficient of pressure rise with temperature.
Equations (39) and (40) permit, by integration from experimental data, the direct
calculation of the entropy changes associated with changes in the state of a homo-
gencous system of constant chemical composition, when no changes in the physical
state (fusion, vaporization, sublimation) take place. When the latter changes occur the
variation in the entropy is easily calculated; if the change of phase occurs reversibly, the
pressure and the temperature are constant during the process (as will be discussed in the
next chapter) and AH = L. Therefore the entropy changes by
AH L
AS = 5 =7 (41)
(for 1 mol). By using both (39), or (40), and (41) the entropy of a substance can be referred
to any appropriate reference state.

3.8. Thermodynamic Equations of State. Calculation of Internal Energy and Enthalpy

By comparing the coefficients of dp in Equations (34) and (36), and introducing
Equation (38), we see that

pa A
(°H) —V_T (f) = V(1 — Ta,). (42)
ép/t T/s
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By using U instead of H, and 7, V instead of T, p, a similar derivation gives

ou ap)
— ) =T|=£) - p=p(Ta,—1). 43
(EV)T (3T v ¢ P( ) (43)

Equations (42) and (43) are called the thermodynamic equations of state. They solve
a problem remaining from Chapter II, Section 5: that of calculating the variationsin U
and H for processes in which ¥ and p vary. Thus by writing the total differentials

dU = (aU) T + (6—U) dv (44)
aT /v av/t

dH =(ﬂ) dT + (a—H) dp (45)
aT /e dp/t

and introducing Chapter II, Equations (29) and (30) and Equations (42) and (43),
we obtain

dU = C,dT + p(Ta,—1)dV (46)

dH = C,dT + V(1—-Ta,) dp (47)
The integration of these formulas completely solves the problem of integrating internal
energy and enthalpy for processes without changes of phase. Obviously, the last terms
in both (46) and (47) vanish for ideal gases.

If changes of phase occur at constant pressure and temperature, the change in
enthalpy, per mole, is given directly by

4H =L (48)
and that of internal energy, by
AU =AH —pAV =L —p AV (49)

The last term in (49) will be negligible for fusion, because the molar volumes of
condensed phases are small. For vaporization and sublimation, 4V = V, = molar
volume of the vapor, and if the vapor is approximated by an ideal gas,

AU =L — R*T (50)

By the use of formulas (46) to (50), the internal energy and the enthalpy of a substance
can be referred to any appropriate reference state.

3.9. Thermodynamic Functions of Ideal Gases

Either by introducing the gas law into Equation (39), which is general for any system,
or by starting from dS=48Q/T and substituting for Q the expressions of the first
principle for ideal gases (Chapter II, Equations (39) and (40)), we derive for ideal gases
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dS=C,dInT—-R*dInp
=C,dInT+R*dIn¥V (51)
=C,dlnp+C,dInV

where we have used the relation d InT=d Inp+d In V' (logarithmic differentiation
of the gas law).
Integration gives:

S=C,InT—R*Inp+b
=C,InT+R*InV + b (52)
=C.lnp+ €, ¥V 45",

And by using the gas law and the relation C,—C,=R* it is easily seen that
b'=b—R* InR* and b"=b—C, In R*.
With the definition or potential temperature (Chapter II, Equation (55)), we have

dlnf=dInT—xdlInp (53)
and for the entropy
dS=C,dIn0. (54)

Taking C, as constant, { may be thus considered as an alternative variable for entropy
in reversible processes.

Having now the expressions of U, H (Chapter II, Equations (37) and (38)) and S
for ideal gases, those for F and G can immediately be written down. For instance,
we have for G:

G=(C,T—C,TInT—bT)+R*TInp+a (55)

as a function of 7 and p, where the terms dependent on 7 alone are between brackets
and a is the additive constant for H.

3.10. Entropy of Mixing for Ideal Gases

Let us assume that we have a mixture of two ideal gases, with partial pressures p,
and p,, at temperature 7 and occupying a volume V. We want to know what difTerence
of entropy exists between this state and that in which the two gases are separate,
at their corresponding partial pressures. In order to calculate AS, we must link both
states by a reversible process; this is done by performing the mixture with the ideal
experiment illustrated in Figure II[-2. Two cylinders of equal volume V contain
initially the two gases; both cylinders have a semipermeable membrane at one end
and can be inserted one into the other, as indicated in the figure (the wall’s thickness
is neglected). A (fixed to cylinder 2) is a semipermeable membrane only permeable 1o
gas 1, and B (fixed to cylinder 1) is a semipermeable membrane only permeable to
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|| —— P*P,

P
B

|
P 1A
L

Fig. 1II-2, TIsentropic mixing of ideal gases.

gas 2. As the gas that diffuses freely through each membrane does not exert any
pressure on it, the device is in equilibrium and the mixture can be performed reversibly
(using an infinitesimal excess of pressure on the external bases until both cylinders
enclose the same volume) and isothermally. Neither gas performs any work, and their
internal energies remain constant (as the temperature remains constant). Therefore,
according to the first principle the process is also adiabatic and, being reversible.
isentropic. We conclude that 4S=0. We can say that the entropy of the mixture is
equal to the sum of the partial entropies, defined as the entropies of the gases at their
partial pressures, when pure and occupying the same volume at the same temperature.
This conclusion can obviously be extended to any number of gases, and is known
as Gibbs’ theorem.

The process of mixing just described must not be confused with that of two gases at
the same pressure mixing by diffusion into each other, with a final volume equal to the
sum of the two partial volumes. This is an irreversible process, with a finite increase in
total entropy.

3.11. Difference Between Heat Capacities at Constant Pressure and
at Constant Volume

In Chapter II, Section 5, we found that C,— C,=R* for ideal gases. With the results
of the previous sections, we are now in a position to derive the general expression of
C,—C, for any homogeneous system of constant composition.

The following well-known relation between partial derivatives can be readily

obtained
=5 B - | o |
(ﬂ) =(ﬂ{) (_V) +(_U) _ (56)
T /p OV /T \éT/p oT /v

From Chapter II, Equations (29) and (30) we see that the last term of Equation (56)is C,,
and that we can write for C,, considering that H = U + pV.

oH U il
Cp=<c_) =(“ ) +p(‘ ) ) (57)
(:'T r (ﬁTp {-"17‘ il

Solving for (8U/d T), in Equation (57), introducing this expression into Equation (56)
and rearranging we obtain:
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ou\ 1/av
C. —C. = o il 1 a1 58
I [H(av)r](al")p 8)

By a similar procedure, using H instead of U, we can also obtain the expression

T JH ap
b - *

Introducing now Equation (43) into (58), we obtain

ap av)
ol e AR PR iR (60
b (aT)v(an e )

The coefficients a,, o, are small for condensed phases (solid or liquid), and therefore
the difference C,—C, is usually (but not always) small, and can be neglected in a
first approximation.

We can express the calculated difference using the coefficient of compressibility
k = —(1/V)(@V/ép)y instead of xy. We apply the following relation between partial

C

derivatives
v\ () (2T _ @Vepi@p/eTy _ | 5
op Jv\ 8T Jy\dV /, (8V/eT),
which gives
a]’
o N 62
= (62)

so that Equation (60) can also be written

TVa?
C,—C,=—*.

(63)
These formulas refer the difference C, — C, to quantities that are directly measurable.
Application of Equation (63) to water gives
C,— C,=0.13calmol 'K 'at 0°C

=0 calmol 'K 'at 4°C
(temperature of density maximum)

=0.18calmol ! K 'at 25°C
to be compared with
C,=18.02calmol "K'

Therefore, in most problems the difference can be neglected with sufficient approxi-
mation. This is not always the case for liquids; for instance, for ethyl ether

C,— C,=11calmol "K'
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to be compared with
C,=40calmol™ 'K™'; C,=29calmol 'K™'.

We shall only be concerned with water and ice, for which the approximation C,=C,
is valid.
The specific heat capacities of water ¢, and ice c; are

c,=100 calg7! K '=418x10°Jkg 'K 1at 40°C
101 calg7 'K 1 =42%x10°Jkg"'K~1at 0°C
114 calg 'K~ '=4.77x10°Jkg 'K~ at —40°C
¢ =0504calg ' K7 =211%x10° ke ' K~1at 0°C
043 calg 'K =181 x10° T kg7 K1 at —40°C

PROBLEMS

1. Onemole of ideal gas occupied 10 1at 300 K. It then expands into a vacuum until its
volume is 20 1. Calculate the change in entropy and in the Gibbs function.

2. Calculate A4S (where it is possible) and 8Q/T for the four processes mentioned in
problem Chapter I, Section I, all resulting in the same isothermal compression of
an ideal gas.

3. 0.01 kg of supercooled water at —10°C is observed to freeze. The latent heat of
fusion is lost to the surroundings and the ice regains the previous temperature.
Calculate AU, AH, AS and AG. Neglect the volume variations and the effect of
pressure changes in condensed phases and show that within this approximation,
I, =1, + I; at the temperature stated. Under what conditions is this strictly true?

4. Assume that only work of compression can be done on a system. What criteria can
be derived from the second principle to decide if the system is in equilibrium with
respect to (a) adiabatic changes, (b) isothermal changes, (c) isothermal isobaric
changes?

5. In problem 5 from Chapter 11 the effect of pressure change was neglected. Compute
now what is the effect of increasing the pressure frome,, ;toe,, o (saturation vapor
pressures at 0 and 20 °C) on the internal energy and on the enthalpy of 1 g of water
at 0 °C. Compare these values with those of problem 5 from Chapter II. The cubic
expansion coefficient of water at constant pressure is —6 x 10 K~ 'at0°C.

6. Compute the variation in specific enthalpy and in specific entropy of liquid water at
0°C
(a) when the pressure is decreased from 1 atm to 0.5 atm.

(b) when the temperature is decreased to —10 °C (the water remaining liquid).
Coefficient of cubic expansion of water at 0°C and constant pressure:
@, =—6x 107° K™
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10.

1.

ATMOSPHERIC THERMODYNAMICS

How will the air pressure change, if the entropy decreases by 10 J kg ~* K ™' and the
air temperature increases by 2%,?

In what direction (increase or decrease) does the enthalpy of a system vary when
undergoing an irreversible isentropic and isobaric process?

1 kg of dry air at 300 K and 1000 mb is brought to 235 K and a pressure p.

(a) Knowing that the specific entropy increased by 100 J kg ! K 1, derive the
value of p.

(b) What is the final potential temperature @,?

Supercooled water droplets in a cloud freeze. After a while, they have recovered the
initial temperature. The pressure did not change. Is the difference of free enthalpy
(Gibbs’ free energy) between the initial and final states zero, positive or negative?
Explain.

1 g of water at 0°C is cooled to —10°C, then freezes (the latent heat of freezing
being rapidly removed by ventilation during the process) and the ice is finally
brought back to 0 °C. Is the total entropy change equal to (1) — I _;,/263.157(ii) to

2 _10/263.157 (i) to —lg.0/273.15 (¢, €y = specific heat

(¢; — c,)In

capacities of ice and water, per gram; Iy _,,, I, o = latent heat of freezingat —10°C
and at 0°C, per gram.) Explain.



