CHAPTER 1V

WATER-AIR SYSTEMS

4.1. Heterogeneous Systems

The fundamental equations seen in the previous chapter (Chapter ITT, Equation (26)) are
valid for closed systems: no assumption regarding the internal structure of the system
is mmplicit in them. Any of the four equivalent equations is a joint expression of the
first and second principles, and therefore contains all that thermodynamics can say
about closed systems, except as regards the third principle. Furthermore, while we
deal with systems that, besides being closed, are homogeneous and of constant chemi-
cal composition*, it is not necessary to specify how the thermodynamic functions
depend on the composition of the system, and in order to determine its state only two
independent variables must be known (e.g., T and p); we do not need to take into
account as another independent variable the total mass or the total number of moles,
because this is assumed to be constant and, if we know the values of the extensive
functions for the unit mass or the mole, generalization to any mass is done by simply
multiplying by m or n (n: number of moles) (cf. Chapter I, Section 3).

However, in the study of heterogeneous systems, we are concerned with the condi-
tions of internal equilibrium between the phases. And even if we consider a closed
heterogeneous system, each one of its phases constitutes in its turn a homogeneous
system (a ‘subsystem’), which will be open, as we shall admit the possibility of exchange
of components between phases. We must find therefore the form of the characteristic
functions and of the fundamental equations, first for open homogeneous systems,
and then for the total heterogeneous system.

The composition of an open homogeneous system is not constant in general;
therefore, besides the two independent variables we used for closed systems (e.g.. T
and p) we have to consider the masses or concentrations of all the components, rather
than a single mass m. In order to do so, we must specify precisely the notion of
number of components; this is defined as the minimum number of chemical substances
with which the composition of all phases can be expressed, separately for each one of
them. In other words, the masses of the components can be considered as mathematical
variables with which the composition of each phase can be expressed; the total num-
ber of such variables (chosen in such a way as to be a minimum) is defined as the
number of components.

* When we say ‘chemical composition®, we refer not only to the chemical species involved but also to
their physical states.
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We shall restrict ourselves to the specific case in which we are interested while
introducing the new concepts and formulas. To develop the expressions for the most
general case would require writing somewhat more complicated formulas, and this
generality is unnecessary for the relatively simple systems that we have to study.
Tn a later section (Section 4) we shall summarize the basic equations and the formulas
will be written in their general way. Consideration of chemical reactions will of course
be excluded, as unnecessary for our applications.

We are concerned with a system composed of moist air and water in either one of
its two condensed states: liquid water or ice. The system composed of humid air,
liquid water and ice is of considerable interest in cloud physics, but in that case it Is
not in general a system in equilibrium and it would therefore be a subject for the
thermodynamics of irreversible processes; from the point of view of equilibrium
conditions, its study would be restricted to that of the triple point of water in the
presence of air.

Our system has two phases: one condensed and one gaseous phase. Obviously,
water substance may be chosen as one of the components. If we should consider that
the different gases do not dissolve in water in the same proportion as they are in air,
each gas would be a different component; but the solubility of the air gases in water or
ice is of no significance to our purposes, and we shall neglect it from the beginning.
We may then count the constant mixture which we have called “dry air” as the second
and last component of the system, and we shall consider that this component is res-
tricted to the gas phase. On the other hand, the two phases can exchange water
component: they constitute thus open systems.

The amounts of components will be expressed by their number of moles, ngy, n,,
ng, n,, n,, n;, where the subscripts d, v, ¢, g, w, i stand for dry air, water vapor, water
in condensed phase, gaseous phase, liquid water and ice (n. may be either n, or n,),
respectively. Alternatively, they may be expressed by their masses m, with similar
subindices.

Let Z be any extensive property (such as U, S, G, V, eic.). We shall call Z, .
Z. o and Z, the total values of Z for the gas phase, the condensed phase and the
total system, respectively, so that

ztm = Zg.tm "’: Zc.tot (1)

Z4. Z,and Z_, on the other hand, will be used as symbols of the molar values.

For each phase, the total value of Z is no longer a function of only two variables
(e.g., p and T), because the mass of its components may also vary. The total differen-
tials of Z for these two open systems can be expressed:

S 5
dZstml =(%) d']"+(£~““) dp+(_g_lot) dnd g
(?T PN [_qp T.n and T.p,n

+ (——azs""‘) dn, (2)
(';‘n\, T.p.n
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where n as a subscript means ‘at constant composition” (that is, keeping constant all
values of n, in the system, except the one that is being varied, in the last derivatives).
By a general definition,

Z_k - (azv.lﬂl) (4}
ank T.p.n

is called the partial molar property 7 of the component k in the phase considered
(k stands for any component and v for any phase).
Similarly.

Ek o (az\'. lul) (5)
é‘mk T.p.m

is called the partial specific property Z, the mass subscript m having a similar meaning
as n in the previous definition.
If in particular Z= G, the partial molar Gibbs function is written

Gy = 1 (6)

and is called the chemical potential of component k. It may be worth noting that
partial molar properties are always referred to the independent variables 7 and p,
as defined above, whatever the meaning of Z: G is in particular the function that is
usually associated with T and p (cf. Chapter III, Section 5).

The interpretation of these quantities becomes clearer by considering for one phase
a process at constant T and p; taking the gas phase, for example, we have

dzg,lot — zd dnd + z\-’ dn\‘_ * {T,)

The partial molar properties are in general dependent on the composition of the phase.
If we integrate this expression at constant composition, we obtain (Z4 and Z, being
then constants)

T By - Wy ®

g ot d=d viy
Physically, we may imagine this integration as the process of adding simultaneously
both components in a constant proportion until the total mass of gaseous phase is
obtained. The partial molar property Z, is therefore the amount contributed by one
mole of component & when added while maintaining a constant proportion of all
components. Equation (8) is of course of general validity, independent of the fact
that it was derived from an argument based on a process at constant 7, p and com-
position; it could not be otherwise, as Z, ., and the Z; are all state functions.
By differentiating Equation (8) and comparing with Equation (7), we find that

ngdZ, +n,dZ,=0. &)
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This is called the Gibbs-Duhem equation, valid for a system at constant T and p,
as applied to our particular example.

The partial molar property Z, will, in general, differ from the molar value Z,
for the pure component, but it can be taken as equal with very good approximation
in our system. Therefore, we write

lle

Za2Zy O By (10)
and

L.=Z or 3,220

M4

For the condensed phase, as we have only one component, obviously Z.=Z_ (or
z.=z.), and Z_ , =nZ ,=m.z,. In particular, we can write for the Gibbs function:

Hd;Gd! ;1,‘="G‘.‘ iucEGc'

Introducing Equations (4), (8) and (10) into Equations (2) and (3), we may write
) oz
dzs.ml o (rz__g‘_‘tot) dT + ({%tﬂ) dp+ Z,dny + Z, dn,
0T Jon op /1

) Belr B -
= nd(b—z") dT + n‘.({'z") dT + ny %) dp +
{JT p.n FT p.n Dp T.n

3]

0z,
+n\.((; ") dp + Z,dny + Z, dn, (11)
op /T

: 0Z ¢ 1ot 0Z¢ 1ot

dé-.-_(m arl v ¢, tot dT g CLic, ot dp &3 Zc dﬂ'

- A ¢
¢T Jpm dp /T

oz, 0Z
=nc(t ‘) dT + nc(t °) dp + Z.dn.. (12)
JT P Bp T.n

At this stage we may introduce the condition, which will always be assumed. that
the total system is a closed one. This is expressed in our case by

ny = const.

, (13)
n, + n.=n, = const.
or by
dng =
dn, = — dn, (14)

[f we introduce these conditions in the previous expressions, and add them to

obtain dZ,,, for the whole system. we have:
2 R “_Z \ )
dZm,=(i-.—“”) Li'.!"—}—({—ﬂ) dp+(Z, —Z.)dn, (15
’ T p.n (:p ST
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where
ZIDI = "d Zd + "‘, .Z.,. + nczc

(62,0,) (azd) (ezv) (az,)

— ) =ny|— +n, + n,

¢T Jpun T /oun éT Jpin éT /o
¢ 3 5 VA

({ Zml) = Ny (C—Zd) +n, (LA_ZV) +n. (G c) u
ép /tn ép/tn ép /T ép /1

If masses are used instead of numbers of moles, the expression will be written

i Z
d4Z..= (ﬁ) dT + (b) dp + (z, — z.)dm, (16)
" oT p.m 6p T,m
with
Zlot = MyZy + m,z, +: m.z,

(az,m) (E‘sz) (@z,,) (E:‘zc)

ittt =Myl — +m | — + m. | —

E}T p,m (R'T p.m 6T p.m GT p.m
0Z i ¢ oz

(). ) ()
6‘p T.m 5;) T,m (?p T,m (3p T,m

Z,,. can be written as mz, m being the total mass and z the average specific value of Z.

4.2. Fundamental Equations for Open Systems

Let us consider now the Gibbs function for the gas phase. Equation (2), with the
definitions (4) and (6) and Z=G, gives

dGs,mt = (%) dT + (Q'(‘;g—m) dp + pydnyg + p,dn, (17)
T p,n 6p T.n
where
Gs.lvl. = j'tnzl(_;l.l + "\-(_}v = Rglly + R, . (I 8)

We can consider a reversible process without exchange of mass (system acting as
closed: dng=dn,=0) and compare Equation (17) with Chapter IIT, Equation (25):

ng.loL S Sg.lm dT + V;;, tot dp . (I 9}

As T and p are independent variables, the coefficients of dT and dp must be identical
in both expressions; i.e.:

(B_Gm) = — S, o (20)
¢T /Jpn ’
G
(‘_&) = Vyo1o1 (21)
lf-'p T.n
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where
Sg.tut = ndgd + n\'gv

and V, . is given by a similar expression.

These equalities will still be valid for processes with mass exchange (the two partial
derivatives being state functions themselves, therefore independent of the process
we choose to consider); therefore we introduce them into Equation (17) and obtain,
for an open phase:

ng,mt R i Sg,ml dT + Vg, tot dp g3 au'd dnd + luv dnv » (22)

This is the generalization of the fundamental equation (Chapter III, Equation (25))
for our particular open system and for processes occurring reversibly with respect
to mechanical and thermal equilibrium. This last condition is implicit in the equality
sign; otherwise the Equation (25) of Chapter III should have been taken with the
inequality sign.

Introducing the equalities G=U+pV—TS=H—TS=F+pV (cf. Chapter III,
Section 5), three other equations could be obtained, similar to Chapter II1, Equation
(25) except for the additive terms uy dmy+pu, dn, that will appear in all of them.
Similar expressions could be written for the condensed phase; in particular, for the
Gibbs function we have

'0G oG
dGc.loI o (0 c.lol) dT i ﬂ) d-p 5 #c dnc
dT Jen dp /T

= —ScwdT + Vo dp + po dn, (23)
where
Sc.lol = ncsc; l";.-.tm =n; P::; Gc_lot = ";:Gc = N e

4.3. Equations for the Heterogeneous System. Internal Equilibrium

We may assume now that we have both phases isolated and in equilibrium, both
being at the same temperature and pressure. Let us bring them together. They shall
continue to be in thermal and in mechanical equilibrium, because 7 and p are the
same for both phases. But we do not know if they shall be in chemical equilibrium;
for our particular system, this means that we do not know whether water (or ice,
as the case may be) and vapor will remain in equilibrium, or whether condensation of
vapor or evaporation of water (or sublimation of ice) will take place as a spontaneous
process. The total value for dG is obtained by adding Equations (22) and (23):
dGioy = — S0 dT + Vo dp + py dng + p, dn, + g dn.. (24)

If we now introduce the condition that the total heterogeneous system is closed, i.e.,
condition (14), we obtain

dGmt i Stol dT a5 Vlot dp + (.uv ™ -uc) dﬂ‘. 2 (25)
1> Vier are the total values for the system; €.2.

Gl S

toi?

Gtu; = fglly + nypy +: n.l, .
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We consider now virtual displacements at constant 7 and p. The condition of
equilibrium is (Chapter [II. Section 6) DG =0 for any arbitrary Dn,. As Dn, can be
positive or negative, this condition requires that its coefficient vanish. Therefore, the
condition of internal chemical equilibrium between the two phases is

Uy = Y. (26)

Again, introducing the relations between G and the other three characteristic

functions U, H. F, a set of four equations of the type of Equation (24) (including (24))

could be obtained for the open heterogeneous system considered here, and another
set of four equations like Equation (25) (including (25)) for the closed system.

4.4. Summary of Basic Formulas for Heterogeneous Systems *

The formulas considered so far have been developed for our particular system (water
or ice + moist air). Their generalization to any heterogeneous system with ¢ compo-
nents and ¢ phases could be easily done without the need of any new concepts. The
general expressions will now be written without derivation; the previous formulas
will be easily recognized as particular cases.

The expression of the total differential of any extensive property 7 is

) 2 1 w s -
dz:(f’_z) dr+(£) dp+ Y Y Zydn,. 27)
6T /p.n T.n

a p v=1 i=1
We have now dropped the subscript ‘tot’; Z refers to the total system. Subscripts i
and v refer to the component and the phase, respectively; thus Z,, means the partial
molar Z property of component i in phase v.
For the particular case Z= G, we have

_ 0
dG:(_‘E’E) dT+(a—G—) dp+ Y Y w,dny,. (28)
p.n Tmn

aT ap v=1i=1

If the system is closed, the conditions

Ip~1e
(=R
=

P
Il
]

(i=1,2,..48) (29)

v=1

of conservation of components must hold, and Equation (28) becomes

@ c
dG = (E) dT + (E) dp+ Y Y (s — min)dny,. (30)
0T Jp.n op /1 v=2i=1
The equivalent of Equation (30) for Z= H would be:
- - 9
dH:(ﬂ) dT+(-cﬁ) dp+ ) ) (H,— H;)dn;,. (31)
or p.n (::p T.n v=2 i=1

* This section is intended both as a summary and a presentation of the formulas in their general form.
The reader may omit it without loss of continuity.
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Here the terms (H,,— H;,) have the meaning of molar latent heats for the passage of
component i from phase | (arbitrarily chosen) to phase v.

The sum of Equations (11) and (12) would be a particular case of Equation (27).
Equation (15) with Z= G corresponds to Equation (30); Equation (17) corresponds
to Equation (28).

Comparison with the fundamental equations (Chapter III, Equation (26)) and
introduction of the other characteristic equations gives the following set of fundamen-
tal equations for processes in open heterogeneous systems occurring in conditions of
thermal and mechanical reversibility:

@ ¢
dU=TdS—pdV+ Y Y p,dn,

v=1 i=1

P c
dH=TdS+Vdp+ Y Y p,dn,
v=1i=1 (32)

] e

v=1i=1

9 c
dG=—SdT+Vdp+ Y Y m, dn,.

v=1li=1

If the system is closed, the same formulas will hold with the substitution of

e
VZZ izl (s — 151) dny, (33)
for the double sum in Equation (32); here phase 1 is any arbitrarily chosen phase.
Equation (24) will be recognized as a particular case of the fourth (32). Equation (25)
is the same with the substitution of the expression (33).
It may be shown from formulas (32) with (33) that the conditions of internal chemi-
cal equilibrium are

Hip = Hizg = .. = g (I-=],2,...,C) (34)

Le., that the chemical potential of each component, be the same for all phases.
Equation (26) was the particular case of Equations (34) for our system. The magnitude
of the double sum gives a measure of the deviation from chemical equilibrium —
therefore, of the irreversibility of the process.

The set of Equation (32) shows that four alternative definitions can be given of the
chemical potential:

(U _(oH _(aF) _(aG 4%
e ong, s,v,n_ on;, S.p.n_ 0Ny J1.v.n Oy T.p.o S

The last one was the definition used to introduce it (cf. Equation (6)). It should be
noticed that the other three derivatives are not the partial molar properties (which
are all defined at constant 7 and p).
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4.5. Number of Independent Variables

We have seen that for closed systems of constant composition the number of indepen-
dent variables whose values have to be known, in order to specify the state of the
system, is two; for instance, 7 and p. If we now have a heterogencous system of one
component and two phases (e.g., water and water vapor), we have four variables
corresponding to the two phases: p, 7, p’, T'. But it we impose the condition of
equilibrium between the two phases, the four variables must obey three conditions:

p=pr
T=1" (36)
G=0G

which reduces to one the number of independent variables. G=y is here the molar
Gibbs function. G=G(T, p) and G'=G(T", p’), so that the third equation implies
a relation between T, p and 7', p'. Therefore, if we fix the temperature at which both
phases are in equilibrium, the value of the pressure also becomes fixed, and vice versa.
This defines curves p=/f(7T) along which an equilibrium can exist — the equilibrium
curves for changes of state, which we shall discuss for water substance.

If the three phases (solid, liquid, gas) are present simultaneously, we have three pairs
of variables (pressure and temperature), but also three pairs of conditions for equili-
brium:

p=p =p"
T=T=T" (37)
G=G =G".

Therefore, there is no independent variable; all values are fixed, and define what is
called the rriple point.

In our system of moist air plus one condensed phase of water, we may consider
the same variables as for two phases of pure water (where the pressure of the gas phase
would now become the partial pressure of water vapor), plus the partial pressure of
dry air. As the number of conditions remain the same as before, we have now two
independent variables, for instance T and p;.

A general rule may be derived, which includes the previous systems as particular
cases: the number of independent variables v that must be fixed in order to determine
completely the equilibrium state of a heterogeneous system (its variance) is equal to
the number of components ¢ minus the number of phases ¢ plus two:

v=c—q@+2. (38)

This is the phase rule, derived by 1. W. Gibbs. It is obtained immediately by a generali-
zation of the previous argument (see Problem 12).
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4.6. Phase-Transition Equilibria for Water

As we have seen above, phase-transition equilibria correspond to only one independent
variable (v=1) and may be represented by curves p=/(T), as shown schematically in
Figure IV-1. They define in the p. T plane the regions where the water is in solid,
liquid or gaseous state.

4

| atm

OIO.OI 100 T’(:’C)

Fig. IV-1. Phase-transition equilibria for water.

The pressure of the vapor, when it is in equilibrium with the condensed phase at
a certain temperature, is called the vapor pressure of the condensed phase at that
temperature. The curves for sublimation and vaporization equilibria are thus the vapor
pressure curves of ice and water. The curve for fusion corresponds to the equilibrium
ice-water; its steep slope is negative, unlike what happens with similar curves for most
other substances. The three curves meet at the triple point P,, where the three phases
coexist in equilibrium.

The extension of the vapor pressure curve of water at temperatures lower than the
triple point, represented as a dashed curve, corresponds to supercooled water (metast-
able equilibrium).

The vapor pressure curve for water ends, for high temperatures, at the critical
point P., beyond which there is no discontinuity between the liquid and gaseous
phases. Thus, vapor represented by the point A4 could be transformed to water B
without undergoing a two-phase condensation, if a path such as the one shown in
Figure TV-1 is followed.

The pressure, temperature, and specific volumes for the three phases at the triple
point are:

p, = 610.7 Pa = 6.107 mb



=

WATER-AIR SYSTEMS 63

T,=273.16K

b, =1091 x 1073 m3kg™";  ice density: ¢; , =917 kgm™>
by = 1.000 x 10> m* kg™’

v,,=206m> kg™ '.

I The latent heat for changes of state, at 0°C, are:

l,=597.3calg™" =2.5008 x 10° J kg™
l,=677.0calg™' =2.8345 x 10° T kg™’
.= 79.7calg™' =0.3337 x 10°T kg™ ",

Within this approximation the same values hold for the triple point. Tt may be remar-
ked that /=14 /,. That this should be so is easily seen by considering a cycle around

‘the triple point (C in Figure [V-1) performed by unit mass, and assuming that it tends

to the point by becoming increasingly smaller. In the limit, the three transitions of
state occur at constant temperature and pressure, so that for the cycle:

AH:AHI+AHH_AH3=O at T;,p;,
or
If + I\r T !s = 0 .
The values for the critical point P, (critical constants) are:
T.=647TK
p.=218.8atm =222 x 10’ Pa
v, =307 x 10 m kg™ ".

The changes in pressure and specific volume along isotherms are summarized
schematically in the diagram of Amagat-Andrews, shown in Figure IV-2. The curves
are isotherms. At high temperatures, they tend to become equilateral hyperbolae,
corresponding to ideal gas behavior in the water vapor. At lower temperatures, they
become first deformed, until reaching a point of zero slope: the critical point P_.
Below this temperature, the vapor and liquid regions are separated by a zone of
discontinuity, where liquid water and vapor coexist. Thus, if vapor represented by the
point A is isothermically compressed, if follows the isotherm until reaching B. At
that point, condensation starts, giving liquid corresponding to point C. As condensa-
tion proceeds, the mean specific volume becomes smaller, while pressure, as well as
temperature, remains constant; the representative point slides along the horizontal
line, from B to C. It reaches C when all vapor has condensed into liquid, and from
there on it follows the compression curve of the liquid, which shows a much larger
slope (smaller compressibility) than for the vapor.

The same type of process could be described for the sublimation region, below the
temperature T,. The straight line (isotherm) T'T corresponds to the triple point.
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)_' ice - vapor e

Fig. IV-2, Diagram of Amagat-Andrews.

Thus, several regions, corresponding to each of the three states, and to the changes of
state, are defined in the diagram, as labelled in Figure IV-2. The region at temperatures
higher than T, is sometimes called the gas region as distinct from the vapor region
(at the right, below T.), to indicate that no two-phase discontinuity for condensation
can occur in it,

As in Figure TV-1, a liquid state D can be reached from a vapor state 4 without
discontinuity by a path such as shown by the dotted curve passing above P,.

4.7. Thermodynamic Surface for Water Substance

Both diagrams p, 7 and p, v can be assembled into one tridimensional representation
of the surface f(p. v, T)=0, the equation of state for water substance in its three
states. This is called the thermodynamic surface for water substance, and can be seen
(schematically only) in Figure I'V-3. The different regions are labelled in it, and the
isotherms are drawn as full lines. A projection of the figure on the p, T plane would
reproduce Figure IV-1. This means that the two-phase surfaces are all perpendicular
to the p, T plane, as they can be conceived as made out of straight lines representing
changes of state at constant p and T the projection of these curves thus determines
curves in the p, T plane, and the projection of the T, isotherm is the triple point P,.
Similarly, the projection of Figure V-3 on the p, ¢ plane would reproduce Figure IV-2.
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Fig. IV-3. Thermodynamic surface for water.

4.8. Clausius-Clapeyron Equation

We have seen that if we fix one of the two usual independent variables, let us say the
pressure, and we heat a condensed phase, the temperature will increase until the
equilibrium value is reached where two phases may coexist. The temperature then
remains constant, as well as the pressure, until one of the phases has disappeared. For
these changes we shall have

AH=1L or Ah=1 (39)

A o Byt (40)
T T

AG=0 or 4dg=0 (41)

where L may be any of the three molar heats, and 7 the corresponding temperature
of the change of phase.

We are now interested in calculating the relation between the changes in pressure
and temperature when we change the conditions while preserving the equilibrium
between the phases. At temperature 7 and the corresponding pressure p we have

GGl (42)

a and b being the two phases. If we produce an infinitesimal change in the conditions,
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while preserving the equilibrium, we shall have, at T+dT and p+dp,

G, +dG, = G, + dG,,. (43)
Therefore

dG, = dG, : (44)
or

~-5,dT+ V,dp= —S,dT + ¥, dp (45)
and

dp AS AH L

dT AV T4V T4V
or (46)

gr.. S

dT Tdv’

Equation (46) gives us the ratio between the changes in the pressure and in the tempera-
ture along the equilibrium curves.

The physical meaning of Equation (46) may perhaps become clearer by considering
a cycle for the particular case of vaporization. We shall have, in the p, v diagram, the
cycle shown in Figure [V-4. We may go from water at 7, p to vapor at 7+dT,
p+dp by the two paths indicated in the diagram by the arrows. The changes in g
in each step are also written in the diagram. Equating the variations in the specific
Gibbs function for both equivalent processes (indicated in the figure for each of the
steps), we obtain again Equation (46).

If we now apply Equation (46) to the melting of water, we obtain

L 1.344 x 10° mbK ™. (47)
dT

This shows that great increases in pressure correspond to small decreases in melting

B
P /
water j, VO
/ 0 \
L \ T+dT, p+dp
/LsmpTwwdp \-5.,‘dT+ vy dp
4 0 A
" L
' I

Fig. IV-4. Cycle related to the Clausius-Clapeyron equation.
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~ temperature. The sign of the variation, peculiar to water and few other substances,

corresponds to the fact that the solid contracts, instead of expanding, as it melts.
. In the case of sublimation and vaporization, Equation (46) can be transformed and
simplified by neglecting in 4v (or 4 ) the specific (or molar) volume of the condensed
phase against that of the vapor (4v=v,), and by introducing the gas law to eliminate v,:

dp _ Ip

aT R 7
or

dinp I L (48)

dF BRI R

This is the equation of Clausius-Clapeyron, where T is the sublimation or the boiling
temperature, as the case may be. Its integration gives

~

lnp—LdeT+const = JLdT+const
R, T® B T '

As a first approximation (particularly for small variations of T') / may be considered
as constant, and

i L .
Inp= — — + const. = — —— + const. (49)
R R*T

L]

- or

pa_ 1 AT _ L 4T
f, Ry T, RETL

(50)

/IR, is thus given by the slope of the straight line In p=f(1/7).
If a better approximation is desired, the expression in Chapter II, Equation (47)
can be used for L. The integration gives then:
4B

lnp:i[-ﬁ+dalnT+—T+£Tz+..}+const. (51)
RO T 2 6

where the integration constant may be determined by an experimental pair of values
T, p.

Let us consider vaporization. The first approximation (49), with the value of /,
above mentioned (Section 6), gives

log p = 9.4041 — Eg}ﬁ (52)

where log is decimal logarithm, and p is given in mb.
The second approximation would be to consider the heat capacities as constant,
so that / becomes a linear function of 7. With this approximation there may be
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obtained:

T @ _ 49283 log T + 23.5470 (53)

(p in mb). This is sometimes called Magnus® formula; it corresponds to taking two
terms within the bracket in Equation (51).

Table TV-1 compares some experimental values with the formulas (52) and (53).
0° C has been taken as reference temperature, to fix the integration constant.

TABLE IV-1

Vapor pressure of water

+°C) - 10 0 10 20 30

p from (52) (mb) 2875 611 12.32 237 43.6
p from (53) (mb) 2865 6.1 1227 2335 4237
p observed (mb) 2863 6.1 1227 2337 4243

For sublfmatf-bﬁ," the first approximation gives

2667
log p = 10.550 — —— (54)

(pin mb) The second approximation might be obtained by using a constant value for
the specific heat capacity of ice:

¢, =2060J kg 'K !

(as for water, no specification of constant pressure is necessary for ice). Due to the
actual variation of ¢; with temperature, however, it turns out that there is no advantage
in using the second approximation*.

The table of physical constants at the end of the book contains a skeleton tabulation
of thermodynamic properties of condensed water, in its solid and liquid phases.

4.9. Variation of Latent Heat Along the Equilibrium Curve,

In Chapter II, Section 6, we studied the influence of temperature on enthalpy changes
associated with changes of phase (ie., on the latent heats of change of state). The
influence of pressure was mentioned to be small for sublimation and vaporization, but
appreciable for fusion. We are now in a position to easily calculate this term, and shall
do so for the pressure change necessary to keep the two-phase system in equilibrium
when the temperature is altered; that is, we shall find the variation in latent heat along

* More exact formulas for the thermodynamic properties of water substance can be found in the World
Meteorological Organization tables, the Smithsonian Meteorological Tables and other references given in
the Bibliography.
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the equi’ librium curve. The thermodynamic equation of state ITI-(42), applied to a change

| of phase, gives (taking the difference between the two phases):

dAH aAV
L) el W P N e Ve TN 55
( dp )T - ( aT )P a ALV (53)

where o, is the isobaric coefficient of expansion and A refers to the difference of values
between the two phases. We take (46) in the form

dp AH
a8 _ 56
dT ~ T4V R
so that
0AH\ dp _AH[ T aav\ _
p JydT T Av \ oT /|
et ], LAl (57)
T AV

and (cf. I1-45):

d4H _ (04H)\  (04H\ dp _
dT \ T /, dp JdT ~

AH T [a4V AH TA(Va,)
= el SN = ] 58
acy+ G 1- (%) |- ae+ - T o

For vaporization (4H = L,) and sublimation (AH = L,) we can make the ap-
proximation
R*T
AV, = (39)
P

which makes the last term of (58) zero. In the case of fusion (4H = L;) this term is
generally not negligible.

4.10. Water Vapor and Moist Air

We shall now consider more carefully the type of gaseous phase with which we shall
be concerned: a mixture of dry air and water vapor. In what follows we shall represent
the water vapor pressure by e, and the partial pressure of dry air by p,, leaving the
symbol p for the total pressure. Subscripts > and i on the water vapor pressure will
indicate saturation values with respect to liquid water and ice, respectively; subscript ¢
will stand for any of the two condensed phases (e, = e,, or e, as the case may be).

Let us first consider pure water vapor. We have seen in Chapter I, Section 12 that dry
air can be treated with good approximation as an ideal gas. The same is true for water
Vapor in the range of temperatures and partial pressures of meteorological interest. For
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each temperature water vapor will depart most from ideal behavior when it approaches
saturation. Table IV-2 shows these maximal departures for several temperatures.

TABLE 1V-2
1(°C) e, V/R*T
=350 1.0000

0 0.9995

25 0.9980
50 0.9961

As these data indicate, the departure from ideal behavior reaches only a few tenths
per cent at the most. Thus in virtually all cases we can assume, with fairly good
approximation:

ev, = R, T (60)

where v, is the specific volume and R, = R*/ M is the specific constant for water vapor:
M, = 18.015 is the molecular weight of water. This gives for the gas constant:

R,=461.5)kg 'K™'.
It is customary to express R, as a function of the dry air constant Ry;. As R*=
=M Ry=M,R, (cf. Chapter I, Section 11),

M |
RFF“Rd:—Rd; £=0.622;§. (61)
&

v

Equation (60) becomes with this notation:

eu, = leT. (62)
e

For accurate computations, however, the departure from ideal conditions should
be taken into account. Besides, we are interested in moist air, rather than pure water
vapor. Two further effects occur with the addition of dry air, which modify appreciably
the values of the saturation vapor pressures over water and ice. In the first place.
we have to consider the displacement of the equilibrium caused by the increase in the
total pressure. This can be computed by using Chapter III, Equation (25), which.

written for unit mass, is

dg = —sdT +vdp. (63)

The increase in specific Gibbs function of the condensed phase due to the increase in
pressure at constant temperature will be:
P=Cc*+Pd

Ag,. = f v.dp=uwv,_Ap (64)
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4 where Ap=p,=p. Similarly, for the water vapor:

e.+Ade.

Ag, = |. v,de = v, de, (65)

o
ee

where the approximation can be made because 4e, turns out to be very small.

Preservation of equilibrium implies that the chemical potentials of water in conden-
sed phase and vapor must remain equal to each other. With adequate approximation
this means equality in the Gibbs function (cf. Equation (10)). Therefore

Ag. = 4g, (66)
and introducing Equations (64) and (65):

Aeczﬁ.dp:&pd. (67)

U | H

v v

For instance, at 0°C and p; = p = | atm, de,, = 0.005 mb.

The second effect that air has on the water vapor equilibrium with the condensed
phase arises from the small, but not entirely negligible, solubility of the gas in water;
the solubility in ice is smaller and may be neglected. According to Raoult’s law, this
produces a decrease of the vapor pressure proportional to the molar fraction of
dissolved gas.

Thus, we have three types of departure from the ideal case of pure water or ice in
the presence of vapor behaving as an ideal gas: (1) total pressure is not the sum of the
partial pressures of two ideal gases (Dalton’s law of mixture of ideal gases: Chapter I,
Section 11) as neither water vapor nor dry air are strictly ideal gases: (2) the condensed
phase is under a total pressure augmented by the presence of the dry air; and (3)
the condensed phase is not pure water substance, but contains dissolved gas. The
three effects can be taken into account by an empirical correction factor f,. which will
be a function of both temperature and pressure. We can then write

e.(T, p) = f(T, p) e.(T) (68)

where e_(T) represents the vapor pressure of the pure condensed phase in absence of
air, and is a function of the temperature alone, and e.(T, p) is the corrected value

TABLE 1V-3

Typical values of Empirical Correction factors

\ 5 \ T

1(°C) \ p(mb) 30 100 1100 1(°C) p(mb) 30 100 1100
— 80 1.0002  1.0008 1.0089 — 40 1.0002  1.0006 1.0060
—40 1.0002  1,0006 1.0061 0 1.0005 1.0008 10047

0 1.0005 1.0008 1.0048 40 1.0019  1.0054
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when air is present. Table IV-3 gives some values of f; and f,,. We see from this table
that even by assuming f; and f,, to be unity we can ensure that the error is always less
than 1%.

We can illustrate the effects of the presence of air on the saturation vapor pressures
(second and third effects mentioned above) by considering how the triple point
becomes modified. This is shown in Figure IV-5. P, is the triple point of pure water

"
i

T(K)

o
=
o
@
|
|
¥

Fig. IV-5. Influence of air solubility and pressure on the triple-point equilibrium.

substance characterized by the temperature and pressure mentioned in Section 6.
The effect of dissolved air is to lower the whole curve of water-vapor equilibrium; in the
figure, the full curve becomes the lower dashed curve. The solubility of air gases in icc
is truly negligible: therefore, if solubility was the only effect, the equilibrium ice-water-
vapor would be now at the intersection of the dashed curve with the ice-vapor equili-
brium curve, i.c. in P’,. However, we must also consider the effect of pressure which
will be different for the two condensed phases; according to Equation (66):

]
D

de; = ko Pa

A(’.:_‘pd.

These two increments must be added to the pressure corresponding to P’, in order to
obtain the new saturated vapor pressures over ice and over water; the former will be
higher than the latter, because r; >, and therefore de; > de,,. Through each of the
two new points obtained, the corresponding equilibrium curves (ice-vapor and water-
vapor, respectively) must pass; their slopes must be given by the two Clausius-
Clapeyron equations (for ice and for water). With these slopes we extend the two
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_,Ig?g;urves until they intersect, at point P'. This is the new triple point, where ice, water
' saturated with air and water vapor will be in equilibrium, under a total pressure of
:L:p=pd + ¢; (the second term being the vapor pressure at P,). The changes in temperature
~ indicated in the figure correspond to a total pressure of one atmosphere (~ 10 Pa);
. solubility displaces the triple point by ~0.0028 K, and pressure by 0.0075 K, the total
- effect thus being a decrease in temperature of 0.010 K.

s
i

4 | atm
* e latm L
PoR l l AR+ VAPOR
iz SIS,
& O OO
~ B P e
g i = e T
A 7 ] -0.0075K 7-00IK
(a) (b) (c) (d)

Fig. 1V-6. Influence of air solubility and pressure on the triple-point equilibrium.

These relations may become clearer by performing an equivalent calculation with
the help of an imaginary experiment. Figure IV-6 indicates schematically that in (a) we
have a triple point equilibrium, with water substance only; e, and T, are the corre-
sponding pressure and temperature. Now we condense all the vapor quasi-statically,
at constant ¢, and T, (b). The pressure is then increased to p = 1 atm, while keeping
equilibrium conditions; the system slides upwards on the fusion curve of Figure I'V-1
(notice that the vertical axis variable is here the total pressure p, rather than the vapor
pressure e, as in Figure 1V-5). According to (47), the variation in temperature corre-
sponding to the increase in pressure must be —0.0075 K; the system is in the situation
(c). Finally, the piston is lifted while letting dry air come in, so as to preserve a total
pressure of 1 atm (d). The liquid is under the same pressure as in (c), but air dissolves in
the water, causing a new reduction in temperature of ~ —0.0028 K. The final temper-
ature is 7, — 0.01 = 273.15 K. It will be noticed that (d) corresponds to the zero point
chosen in the original definition of the Celsius scale (Chapter I, Section 5).

4.11. Humidity Variables

The water vapor content of moist air can be expressed through a number of diflerent
variables, several of which are of common use in meteorology. We shall first define
the specific humidity q as the ratio of the mass of water vapor m, to the total mass m:

q=m,m. (69)
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The specific gas constant for moist air will be:

_ myRy4 + mR,

m

R = (1 —g)R, + gqR,

= [1 + q(l - l)] R, = (1 + 0.608 ¢)R,. (70)

&

The equation of state becomes:

pv=(1+0.619)R,T = R4T, (71)
by which we have defined the virtual remperature T,

T,=(1 +061lg)T (72)

as the temperature of dry air having the same values of p and v as the moist air con-
sidered.
Another humidity variable is often used: the mixing ratio r, defined by
_m,

r= (73)

my

Let us derive the relations between these two variables. From m=my+m, and the
definitions of ¢ and r, we obtain immediately
ro . 4q

= s r=— 74)
l+r 1—g (

q

Both r and g are always smaller than 0.04. We may thus write, without great error,

a=r. (75)

If we write both partial pressure equations for a given mass of moist air, and divide
them side by side. we obtain:

pdl'f' — dedT
1
EV - _m\.RdT
L
€ . ¥
Dy
That is:
— oL

; 7
p—e E+r (76)
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. or approximately

£
r=—c. (77)

P

From e= N, p (cf. Chapter 1, Equation (21)) where N, is the molar fraction ol water
yapor, comparing with Equation (76) (or directly from the definition of N,) we see that
; r
N, = . (78)
e+

If the air is saturated with respect to water,

£y pry,
o = D e, = (79)
P — &y i T

and with respect to ice:

.. ¢ = pr; : (80)
e+ r

.F'i= .
p— g

In the atmosphere, almost invariably
e, < 60 mb; r, < 0.04

so that we may write as an approximation

exPr (81)
&

g E'rw: e = Eri. (82)
& >

We shall also define another humidity variable, the relative humidity, as the ratio of
the molar fraction of water vapor to the molar fraction corresponding to saturation
with respect to water N,, or with respect to ice N,;. The corresponding relative
humidities will be represented by U, and U, respectively. Because we consider vapor
and air as ideal gases, we can write

N, PN, e

U l = = —
" N\'W pN\'w ew (83)
and similarly
e
Uy =—.
e (84)

Within the usual ideal gas approximation, (83) and (84) can be taken as the definition of
relative humidity.



76 ATMOSPHERIC THERMODY¥YNAMICS

To derive r as a function of U, and r,,, we take the expression of r given by Equa-
tion (76), and we replace e = U,e,, and e,, by the second Equation (79). We obtain
U.r.

= Uyry. (86)

And similarly for U, and r,.

Usually U, is obtained experimentally. p and 7 are also known. r,, is obtained from
T through a table or a graph. g and r may then be calculated from the formulas above
mentioned.

U, and U; are commonly given in percentage, g and r in units per mille (as grammes
per kilogramme).

It should be noted that it is customary, for meteorological purposes, to express
relative humidity at temperatures less than 0 °C with respect to water. The advantages
of this procedure are as follows:

(a) Most hygrometers which are essentially responswe to the relative humidity

indicate relative humidity with respect to water at all temperatures.

(b) The majority of clouds (between 0 °C and at least — 20 °C) consist, in whole or in
part, of supercooled water. Only below —40°C are clouds always entirely
glaciated.

(c) As a corollary to the above, supersaturation with respect to ice can frequently
occur; this is not true with respect to water, so that it is convenient to require only
two digits in coded messages for relative humidity.

4.12. Heat Capacities of Moist Air

In Chapter II, Section 5 we have seen the values for the heat capacities and ratios » and
n for diatomic gases, which may be applied to dry air.

The water vapor molecule is a triatomic non-linear molecule, whose position may
be described by 3 translational and 3 rotational coordinates, giving 6 quadratic
terms in the expression of its kinetic energy. Correspondmg]y. the equipartition
theorem would give

6. =38R, =3R, =033 calg" K™
and

p, =4R, =044l calg 'K~
on the assumption that the vibrational energy does not contribute to the specific
heat capacity (all molecules in ground state). However, spectra of atmospheric radia-

tion show vibration-rotation bands produced by water vapor at atmospheric tempera-
tures (particularly a strong vibration band centered at 6.27 um). Larger experimental
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TABLE IV-5

Specific heat capacities of ice (c,), water (¢,) and water vapor at constant
pressure (¢, ) (IT calg=* K™1).

t(°C) Ci Cy ¢p, (pressure = ey) ¢y, (pressure =e,)
— 60 0.397 - - -
—40 0.433 1.14 0.4429 0.4430
—30 0.450 1.08 0.4434 0.4436
— 20 0.468 1.04 0.4441 0.4443
—10 0.485 1.02 0.4451 0.4452
0 0.503 1.0074 0.4465 0.4465
10 - 1.0013 - 0.4482
20 - 0.9988 - 0.4503
30 - 0.9980 - 04530
40 - 0.9980 - 0.4552

values are therefore obtained, somewhat dependent on temperature and pressure.
Table V-5 gives some values for ¢, , as well as for ¢, and ¢;.

If we take the specific heat capacities ¢,, and ¢, , as well as those of dry air, as
approximately independent of temperature, we may write to a good approximation

¢,, =0447calg 'K ' = 1870 T kg™ 'K™'
¢, =0337calg 'K~ ' =1410J kg 'K ".

If we now consider unit mass of moist air, the heat 6 Q absorbed at constant pressure
for an increase d 7 in the temperature will be:

3Q = mydqy + m,0q, = (1 — q)dqq + q9q,

where g, and dq, are the heats absorbed by unit mass of dry air and of water vapor,
respectively, and ¢ is the specific humidity. Dividing by dT:

¢
cp =1 —q)c,, + qc,, = cde:l +(& —I)q:|
o

=c,, (1 +0.87q) = c,,(1 +0.37r). (87)
Similarly we can obtain
e, =c,, (1 +097q)=c, (I +097r) (88)

R (1+061q)R,

¢

1-|—0.61q;f
(1+087q)c,, |+087q

P

2 #4(1 — 0.2649) = »,4(1 — 0.267) (89)
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n = ny(l = 0.10g) = ny(1 — 0.107) (90)

where account has been taken of the fact that ¢ <1.

4.13. Moist Air Adiabats

According to Poissons’s equations (Chapter II, Equation (53)), for an adiabatic
expansion or compression from p, T to p’, T', we must have

T'=T(—p—r)“. (91)
p

As x varies with ¢ for moist air, the adiabats passing through a point p, T will be
different for different values of ¢. In particular x=x, for dry air, and as »<x,, the
adiabats in a diagram T, p will be slightly less steep (7 will vary slightly more slowly)
for moist air than for dry air.

The potential temperature of unsaturated moist air, 8, will be from Chapter II,
Equation (55), and (89),

#a(1=0.26q) -0.07q
0, = T(@) o B(@) 92)
p P
(p in mb). Differentiation yields
%; —U.O?Bln(@). (93)
oq P

Calculation with Equation (93) shows that the difference (6, — 6) generally is less
than 0.1°C, so that one can treat unsaturated ascent or descent of air as if it were dry.
If in the definition of potential temperature

()

we put x=y, and substitute the virtual temperature 7, for T, the new expression
defines the virtual potential temperature 0, .

4.14. Enthalpy, Internal Energy and Entropy of Moist Air and of a Cloud

When we consider moist air as a closed system, and within the accepted approxima-
tions of ideal behavior, the values of the internal energy, enthalpy or entropy will be
given by the expressions derived in Chapter II, Equations (37) and (38) and Chapter
II1, Equation (52). Referring to unit mass:

u = ¢, T + const. (94)

h = ¢, T + const. (95)
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s=c,InT — RInp + const. (96)

- where R, ¢, and c, are given by Equations (70), (87) and (88).

 But we are also interested in the study of clouds of water droplets or of ice crystals.

j We shall treat them as closed heterogeneous systems; each phase, as seen in Section 1, is
an open subsystem. We may then apply Equation (16) to the enthalpy. It will be,
assuming that the condensed phase is water:

¢H cH
H=|— h, — h,)d
d (aT)p.de+(ap )T.mdp+( % W) m‘

¢H JoH
=|— dT + | — T
(6T ).,.m ( ap )T.mdp + 1, dm, %)

The enthalpy of the system will be the sum of the enthalpies of the two components in
the two phases:
H =myh, + mh, + m,h,,

= mghy + m,(h, — h,) + mh,, (98)
=mghy + m,, + mh,,.

Here the partial specific enthalpies i, have been taken as the specific enthalpies #,,
as indicated in Section 1, and m,=m,+m, is the total mass of the water substance
component. The conditions of a closed total system (implicit in Equation (97) are
expressed by

my = const.
m, = m, + m,, = const.

According to Equation (98), the partial derivatives in Equation (97) are really sums
of the partial derivatives for the two components in the two phases, multiplied by the
respective masses. Of these derivatives, we know that, within the ideal gas approxima-

tion,
(ahd) = Cpy» (f:}ri) = Cpgn (ii) = (ﬁh‘) =y
éT /pom éT Jpm cp/Tm ip/Tm
&
— (‘w
@T p.m

where we do not need to specify “at constant pressure™ in the specific heat, because
¢, and c, differ very little for water and ice (cf. Chapter III, Section 11). It may also be

shown that
(Eh“.)
ap /Tm

For water,
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which may be computed from Equation (42) in Chapter III, Section 8, is a negligible
quantity*,
Introducing these values into Equation (97), we obtain

dH = (myc,, + me,, + mye,)dT + I, dm,
= mc,dT + [,dm, (99)
where ¢, is the mean specific heat, given by
me, = myC,, + My, + MCy,. (100)

If we now want to integrate the expression (99), to find the enthalpy of any given
state, we must choose a reference state by specifying a certain value of the temperature
and of the mass of water vapor m,; the pressure does not need to be specified, because
the expression (99) does not depend on it. The integration constant is then fixed by
assigning the value H = 0 to the reference state. We shall choose a state at a temper-
ature T, and with all the water in the liquid state.

We have to consider a process by which the system changes its temperature to 7
and a mass m, of water goes into the gas phase. We may choose, among others, the
two paths indicated below: a) first evaporating m, grammes of water at a constant
temperature 7, and pressure, and then heating the whole system to T, or b) first
heating the dry air and the water to 7" and then evaporating m, grammes of water at 7.

TU

my
Temperature: Ty " m, \\ T
Mass of dry air: Mg / m, my
Mass of water vapor: 0 N T ~ m,
Mass of liquid water:  m, 5 5 my / m,,

0

m,

If we now integrate Equation (99) along both paths (inserting in each step the appro-
priate values of the temperature, or of the masses of vapor and water, and considering
the specific heats as independent of the temperature), we obtain:

ah,, )
* (_}p-)rm = vl — o, TN =0, \ (2, = —6 x 10 SKY

This will contribute in (97) a term m_v. dp, which may be compared with the contribution m_c, d T from the
temperature derivative. We see by comparing these two terms that a change of as much as I atm in the
pressure is equivalent to a temperature change as small as 1/40 K.
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(a) H = H, + (mgyc,, + mye, + mc )(T — Tp) + L(Ty)m,
- HU + "lﬂ'p(T — T{}) + I‘.{ngm‘, (101)
(b) H = Hy + (myc,, + me)(T — Tp) + 1(T)m, (102)

- where H, is the value of H in the reference state. Both expressions, which are equivalent,
are related by Kirchholl's theorem Chapter II, Section 6 which may be written here (in

: -.iﬁtegrated form):

L(T) = 1(Ty) = (¢, — c)(T —To). (103)

It should be noticed that the coefficient of (T — T;) in Equation (101) varies with m,,
and [ (T;) is a constant, while in Equation (102) the coefficient is a constant,and [ (T)is a
function of T(l, decreases about 0.19, for each degree of increase in temperature). In
Equation (102) the terms with T; and H, can thus be written as an integration constant:

H = (myc,, + me, )T + L(T)m, + const. (104)

If the formula is referred to the unit mass of dry air, i.e., if the system contains the unit
mass of dry air, its enthalpy can be written

H, = (¢p, + rc,)T + I (T)r + const. (105)

where r, = m,/m, and the subscript of H indicates that its value is referred to unit mass of
dry air.

If the heat capacities of the vapor and the water are considered as small quantities,
m, is assumed negligible as compared with my and /, is taken as approximately indepen-
dent of the temperature, we may write the formulas:

Hy =h=c,T + l,q + const.

=~ c,T + I,r + const. (106)

where his the enthalpy of the unit mass of the total system (including both components),
as approximate expressions for either Equations (101) or (102). Here the expressions
(87) for moist air can be written for ¢,

The advantage of having an integrated expression like Equation (101), (102) or (104)
lies in that we can calculate the difference 4H between any two states of a closed system
by simple difference, the integration having been done once and for all. Differentiation
of these formulas will of course give back Equation (99) or an equivalent expression.

If we want to derive an expression for the internal energy, we start with

eU al
dU =| — T e — 107
(C?T),.md + ( p )T.mdp + (u, — u,)dm, (107)

instead of Equation (97). We may then notice that the derivatives with respect to p
vanish as before, that the derivatives with respect to T give specific heats at constant
volume (instead of at constant pressure; the one for liquid water being practically the
same), and that
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u, = h, — po,
u,=h,—ev,=h,— R,T.
Following then the same integration as before, we obtain through the path b
U = (mgyc,, + me, )T + [I(T) — R, T]m, + const. (108)

which could also be derived from Equation (104), with the appropriate substitutions
(hg = ug + RyToh, = u, + R, Tih, = uy;c,,, = ¢, + Ry)using(98)and asimilarexpres-
sion for U).

For a system with unit mass of dry air:

U, = (cy, + rice)T + [L(T) — R,T]r + const. (109)

and with simplifications similar to the ones applied to the enthalpy, Equation (108)
becomes

U zuze,T+(l,— R, T)g + const. =¢,T + (I, — R, T)r + const.
(110)

=c, T+ 1l.g+const. = ¢, T + I,r + const. (111)

where U, and u have similar meanings to those of H, and h. In (111) the term R, T has
been neglected against the latent heat, considering that it only amounts to about 5 or
6% of I,.

A similar derivation can be performed for the entropy, but now we can no longer
disregard the effect of pressure, and the reference state must be specified with both
the temperature and the pressure. We shall define it as two phases, isolated from each
other, one consisting of m,; grams of dry air at temperature 7; and pressure p;.
and the other consisting of m, grams of liquid water at the same temperature (and
pressure, although this parameter is immaterial for the condensed phase).

We shall now apply the total differential expression of the entropy separately for the
two components in the two phases:

0s.
dsiz("—s") dT+(a—S-*) dp + s; dm; (112)
p,m

oT Sp T,m

i stands for d, v or w, and S;=m,s;,. We may notice that p is here the pressure of the
particular component for the two gases, p, and e, while for water it is the total pressure
p exerted upon it. As before,

S=5S;+ 8, + S, =mysy + ms, +m,s,. (113)

In applying Equation (112) to the dry air we notice that dmy = 0, and that (cf. Chapter
IT1, Section 7)

(@) _ Cha. (ﬁ) _ _(fﬁ) __R
oTlom T \op/tm 0T /p.m Pq
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‘Therefore:

i

ge dSy = mydsy = myc,, dInT — myR, d In py. (114)

~ We also notice that

R
JaT p.m 4 X T p.m T

i : (63.,) . &; (@) e (‘3&) 0,
?ﬂf ﬁp T,m e c';'p T,m 6?" p,m

li2

& so that
, dS,=mye, dInT —m,R,dIne +s,dm, (115)
‘ dS, =m.c,dInT + s, dm, . (116)
' We now make the sum dS = dS, + dS, + dS,, taking into account that dm, =
—dm, and that
Iy
S, — Sy = —.
T
‘We obtain

dS = (mgye,, + myc,, + mye,)dInT —myRydInp, —

l
—mR,dIne+-=dm,. (117)
T
In order to integrate this expression, we consider now that the air undergoes the
reversible processes

Ty, po—=T, po—=T, pa

and the water substance the reversible processes

mass of vapor: 0 0 0 m,
mass of water;  m, m, m, m,
b — — —
- temperature : Ty T T T
pressure: Po Po e T) eu(T).

We integrate Equation (117) over the total change, and obtain

T 1(T)m,
S=SD+(mdc,,_,+m‘cw}ln~——dedln-pi+ A1), (118)

| T, Po i
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where S, is the entropy at the reference state®.

We have now two separate subsystems, one consisting of dry air at 7, p; and the
other consisting of water in presence of its saturated vapor. The two gaseous phases
occupy the same volume v, by hypothesis (within the ideal behavior assumption).
and they can be mixed by an ideal process using semipermeable membranes, as
described in Chapter I1I, Section 10, without change in entropy.

Provision should also be made in this ideal process, to perform the increase in
pressure over the water from e,, to p=p,+e,,, but this can be disregarded because the
effect on the entropy is negligible.

We have thus finally the heterogeneous system in which we are interested: m,
grammes of liquid water in presence of a mixture of dry air and saturated vapor at
the partial pressures p, and e,,. Its entropy (referred to the reference state as defined) is
given by Equation (118).

As we did for the enthalpy (Equation (104)), we can consider the terms with T;, py and
S as an undetermined integration constant, and write

S =(myc,, + me,)InT —myRy In p, + -I"(—'?ﬂ' + const. (119)
The entropy S, of a system with unit mass of dry air can be written

I(T)r
T

S, =(cp, +rc)In T — Rylnp, + + const. (120)

Making the same simplifications as before (Equation (106)) and considering that
P4 = p, we obtain the approximate expressions

l
S, ;s;cplnT—Rdlnp+'?q+const.:

It

ILr
cplnT—RdInp+%+const. (121)

where s is the entropy of unit mass of cloud.

We have derived the expression for a system with the vapor pressure saturated at
the given temperature, because it is the case in which we shall be interested. By
separating the water phase and adding an appropriate expansion of the vapor in the
series of steps imagined for the water substance in the derivation, it could be easily
seen thata term —m,R, In(e/e,) should be added to Equation (119)if the vapor pressure
of the system is e rather than e_; obviously, such a system could not be in equilibrium.

* We may notice that by differentiation of this expression, one obtains

I(T) L(T)m n,
———dm ———dT +—dI(T).
Tz T AT)
This is an alternative formula for Equation(117)and can be seen to coincide with it by taking into account the
Clausius-Clapeyron equation d Ine/d T = I(T)/R,T? and Kirchhoff's law dI, = (¢, — ¢,)dT.

ds = (myc,, + mc,)dIn T —myR dInp; +

¥



I;.
[l

T

WATER-AIR SYSTEMS 85

PROBLEMS

. The average value of the heat of vaporization of water in the temperature interval

90-100°C is 542 cal g~ '. Derive the value of the water vapor pressure at 90°C.
From the equation

2937.4

log,p,e= — — 49283 log,, T + 23.5471

for the saturation vapor pressure of water (where ¢ is given in mb), derive its latent
heat of vaporization at 10°C.

The specific volume of liquid water is 1.000 cm® g !, and that of ice, 1.091 em® g~ ',
at 0°C. What is the rate of change of the melting point of ice with pressure in
Katm™'?

(a) The formula

log,qe = 9.4041 — Eﬁ
T

gives the water vapor pressure (e in mb) as a function of the temperature. Using
this expression, whose constants have been adjusted to give the experimental value
e=6.11 mb for 0°C, and the value of R* from tables, derive the change in entropy
when | mol of water evaporates in conditions close to equilibrium, at 0°C. Give
the result in cal K~ mol ™",

(b) How much should be added to A4S if the process takes place at 25°C?

Use the value ¢,5°c=31.67 mb. Assume that /, is unknown.

. The melting point of ice is depressed by 0.075 degrees when the pressure is in-

creased by 10 atm. From this information derive the value of the latent heat of

freezing. The density of ice is 0.917 gem ™.

. An air mass has a temperature of 30°C and a relative humidity of 50% at a

pressure of 1000 mb. Derive the values of: water vapor pressure, mixing ratio,
specific humidity, specific heat capacity at constant pressure, virtual temperature,
and the coefficient . What would be the values of its potential temperature and
its virtual potential temperature after expanding the air adiabatically to 900 mb.
A mass of moist air is at a pressure of 900 mb and a temperature of 2.1°C. The
mixing ratio is r=3x 1073, Compute T,, R, ¢, and x.

. The saturation vapor pressure at 25°C is 31.67 mb.

(a) What is the partial vapor pressure of a parcel of air at that temperature, if its
dew point is 5°C? (The dew point is the temperature at which the air becomes
saturated, when cooled isobarically). Use neither diagrams nor the vapor
pressure table.

(b) What is the value of the mixing ratio r, if the pressure is 1000 mb?

(¢) What will be the values of the vapor pressure and the mixing ratio, if the parcel
expands to 800 mb?
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9. Knowing that saturated air at 30 °C and 1000 mb has a mixingratior,=27.7gkg "',
and that the average value of the latent heat of vaporization between 30°C and
0°C is 588.4 cal g~ ', calculate the saturation mixing ratio at this last temperature
and 500 mb.

10. Using the value of the latent heat of fusion from tables, calculate the ratio e,/e; at
—10°C(e,, = saturation vapor pressure with respect to water; e; = id. with respect
to ice).

I1. 1 g of dry air is saturated with water vapor at 20°C.

(1) What is the specific change in enthalpy and in entropy of the moist air, when
cooled at | atm of total pressure from 20°C to 0°C, condensation taking place ?
(2) What are the relative errors in 44 and As made in the following approximations:
(a) Assuming /,=const.=590 cal g~ !:
(b) Neglecting the heat capacity of water?
(c) Taking m=m,? (m: total mass; m,: mass of dry air),
12. Derive Gibbs' phase rule (Equation (38)).



