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CHAPTER V

EQUILIBRIUM WITH SMALL DROPLETS AND CRYSTALS

In this chapter we shall deal with a particular type of heterogeneous system, which is
important in cloud physics. The reader who is not interested in that field can omit the
chapter without loss of continuity.

We shall consider the equilibria associated with changes of phase in systems with
one or two components and two phases, as those considered in the previous chapter,
but with the difference that one of the phases is in such a state of subdivision that the
effects of interfacial tensions cannot be ignored. We shall be interested, in particular,
in obtaining expressions for the vapor pressure of small droplets and crystals, and for
the temperature at which small crystals are in equilibrium with the liquid phase.

The general difference with the systems studied so far lies in that the work 64
performed by external forces on the system consists not only of the work of expansion
—pdV but also of another term giving the work necessary to increase the area of the
interface separating the condensed from the gaseous phase. By definition of interfacial
tension, this term must be written ¢ d.% where o is the interfacial tension and .% the
area of the interface. The differential of the Gibbs function in a reversible process
becomes in this case

dG = —SdT + Vdp + 0 d¥ (1)

5.1. Vapor Pressure of Small Droplets of a Pure Substance

In Chapter IV, Section 6, the vapor pressure of a liquid was defined as that pressure at
which the vapor is in equilibrium with the liquid phase. It was implicitly understood
in that definition that the separation surface between the phases should be plane. If
the surface has a pronounced curvature, the vapor pressure depends on it; the press-
ure will be higher for convex surfaces, and smaller for concave surfaces, than for a
plane one. The reason for this, as we shall see, is that the evaporation from a convex
surface decreases its area, which contributes negatively to the variation of Gibbs
function, while the opposite occurs with a concave surface. The curvature of an
element of surface is described, in general, by means of two radii of curvature; how-
ever, we shall restrict consideration to the case when both radii are equal, ie., to
spherical surfaces. We shall be particularly interested in the case of small droplets
Suspended in gaseous phase and in these conditions the drops adopt a spherical
shape*.

* When the drops are bigger. the falling velocity becomes appreciable and the drop may become deformed.
But when this occurs the effect of curvature on vapor pressure is already negligible.
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Let us now consider a spherical drop of radius R, in equilibrium with the vapor,
which will be at the pressure pg. We shall also consider a plane liquid surface, in
equilibrium with its vapor at the pressure p, (where the subscript s indicates saturation
with respect to the liquid with a plane surface).

Let us assume now that we transfer dn moles of liquid from the mass with a plane
surface to the drop. We can imagine two paths (A and B) to perform this operation:

(A) (a) Evaporation of dn moles from the mass with a plane surface, at constant
pressure p, and temperature T;
(b) Isothermal compression of the vapor from p, to pg;
(c) Condensation of the dn moles on the drop at constant pressure pg and
temperature T;
(B) (a) dn moles are separated mechanically from the mass with plane surface;
(b) the dn moles are incorporated into the drop.

We must calculate the variation of Gibbs function of the total system (drop and
mass with plane surface) for the considered modification (transference of the dn moles)
by the two described paths.

We observe that in the first path the steps (a) and (c) do not contribute to the change
in Gibbs function, because they occur reversibly at constant pressure and temper-
ature. For step (b) we assume ideal behaviour for the vapor, and calculate*:

e

dG,\:dnj Vdp=(1m‘2"‘1"111'E;—R (2)

Ps

where V represents the molar volume.

In order to calculate the variation dGy corresponding to the second path, we
consider first the variation of surface and volume when a drop of radius R increases by
dn moles. Let n be the total number of moles in the drop, M the molecular weight of
the liquid, ¢ its density and ¥~ the volume of the drop. We shall have:

. nM
¥V =—— =4%nR3, & = 4nR?
(1]

-

where % is the surface of the drop. We obtain by differentiating:

M
d¥ = —dn=4rR*dR, d¥ =8nRdR

o

=

* Notice that the term with surface tension, which does not act as an external force, does not contribute to
dG. During the condensation on the drop, which is the step in which its surface increases, we can imagine
both the drop and the surrounding vapor subject, as a whole, to a pressure p, as the sole external force
acting on the system.
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" and, comparing both expressions,
A M

[ d ==—d 3
o R 3)

=

* The mass with a plane surface can be considered as a part of a drop of infinite radius.
d¥ is in that case a second-order infinitesmal; for the small drop, formula (3) will be
valid with its corresponding value of R. The only work performed on the system in the
step (B.a) is the work necessary to separate the dn moles (thereby creating an interface)
from the mass with a plane surface. This work must be compensated in step (B.b)
(where that interface disappears again); but in this last step the system must also
receive the necessary work to increase the surface by d.%. According to (1), this work
appears as the only term in the variation of Gibbs function because the process occurs
at constant pressure and temperature. Therefore:

M
T L

dly (4)

Equation (4) expresses the fact that the only difference between the values of Gibbs
function for the initial and the final system (which only differ from the first in having
dn fewer moles in the mass with a plane surface and dn more moles in the drop) is that
corresponding to the difference in the drop surface area. As the variation in Gibbs
- function must be equal for both paths, we equate Equations (2) and (4) and obtain:

PR __2Mo _ P
p. OR*TR R )

where P = 2Ma/oR*T; i.e.,

In

Pr = p,e™™ (6)

¥ '[fR is not very small, Equation (6) can be approximated by developing the exponent-
i 1al to the first-order term:

rEp\ L+ ¢ (7)

For water at 0°C we have:
i

:'. o =00757 Nm™!

o = 1000 kg m~*

| M = 0.01802 kg mol !

i P =120x 107° m =120 x 1072 ym

with which are calculated the values of Table V-1 for the ratio Pr/Ps
i We may remark that the range of R values corresponding to water droplets in clouds
i goes from 1 to 100 um.
l The theory assumes that the surface tension is not affected by the curvature. This
i hypothesis becomes doubtful for radii much smaller than 0.01 um.
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TABLE V-1
Vapor pressure of small water drops
R (pm) Pr/Ps
100 1.000012
10 1.00012
1 1.0012
0.1 1.012
0.01 1.128
0.001 i

As a consequence of the variation in vapor pressure with the size of drops, a system
consisting of vapor and drops of various sizes cannot be in equilibrium; the bigger
drops must grow at the expense of the smaller ones. In other words, the liquid distills
from the smaller to the bigger drops until the former disappear.

This theory is still valid in the presence of an inert gas (e.g., air in a system of water
drops and water vapor) and is therefore applicable to clouds. We must only take into
account, in that case, that the pressures considered are the partial pressures of water
vapor.

We shall call saturation ratio r, the ratio of water vapor pressure to the saturation
vapor pressure r = p/p,, and supersaturation

p

——=1l=r—-1.

ps
When air is present, r becomes equal to the relative humidity U,. For instance, we can
see in Table V-1 that, for an atmosphere saturated with respect to water droplets to
have a supersaturation of 1%, the droplets must not be larger than approximately
0.1 pm radius.

In Figure V-2, the upper curve represents the values of the equilibrium saturation

ratio rg = pg/p,. as a function of the radius R, for pure water.

5.2. Vapor Pressure of Solution Droplets

We shall consider now the case of small drops of solutions of a non-volatile solute in a
solvent. This is the case, for instance, of a salt dissolved in water and therefore it finds
application in the study of cloud physics, because the droplets of the cloud form by
condensation of vapor on nuclei of hygroscopic substances suspended in the air.

We assume now that we have a mass of pure solvent with a plane surface and a
spherical drop of solution. We shall call py the vapor pressure of the drop and ¢ its
surface tension (primed symbols will be used for the solution and unprimed symbols
for the pure solvent). We shall imagine, as before, that we transfer dn, moles of solvent
from the mass with plane surface to the drop; dn, is infinitesimal and it therefore does
not alter the composition of the drop. With the subscript 1 we characterize the
solvent, while subscript 2 will be used for the solute.
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The first term will be, as before, the isothermal evaporation at pressure p,, the
thermal compression (or expansion) to pg and the isothermal condensation over
e drop at pressure pp. The variation in Gibbs function (assuming ideal behaviour)
‘will have the value

dG, = dn,R*TIn 2% (8)

Ps
Path B will consist now of the following steps:

b (a) dn; moles of pure solvent are separated from the mass with a plane surface. To
do this it is necessary to create a new interface with an increase of the Gibbs
function. But, as in the previous section, this will be compensated by the
disappearance of that interface in step (c).

(b) The pressure over the drop is modified isothermally from pg to p, + I1, where IT
is the osmotic pressure of the drop solution*.

(c) The dn, moles are introduced reversibly into the drop through a semi-
permeable membrane that only permits the pure solvent to pass through. In this
step, the interface created in (a) disappears, and the surface area of the drop
increases. Schematically, we can represent the process as in Figure V-1.
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Fig. V-1. Reversible introduction of solvent into solution drop.
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(d) The pressure over the drop is brought again, isothermally, to the value pj.

- Let us calculate now the variation in Gibbs function by this path. The variation in
step (a) is compensated by that in step (c). In step (b) we have
pet 1l
dGBh = j‘ V’ dp

Pr

o

E * By definition, /7 is the difference between the pressure acting at both sides of a semi-permeable mem-
| brane which only permits the passage of pure solvent and that separates the solution from the pure solvent
i (i.e., the pressure over the solution less the pressure over the solvent), in equilibrium conditions.
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where V’ is the volume of the drop. In step (c), which occurs at constant pressure and
temperature*, the drop surface increases, so that according to Equation (1):
dGu: =0’ d.
Finally, in step (d) we have
P
4Gy, = J (V' + dn,V))dp
ps+ 1

where V, is the partial molar volume of the solvent in the solution (see Chapter 1V.
Sectionl).
The sum of the three differentials gives

PR
dGy = dn, j Vidp + o' d¥. (9
p+ 11

As a first approximation, we can take V; as independent of the pressure and equal to
the molar volume of the pure solvent V}; the first term then becomes

M
dn, J 7, dp = dn, Vy(pk — p, — 1) = — V,ITdn,
pe+ 1

where, in the last expression, we have considered that the difference (pi — p.) 1s
negligible against I1. As to the second term, we consider that

V' =n,V, +n,V, = %aR>

where V, is the molar partial volume of the solute in the solution, and n, and n, the
number of moles of solvent and solute in the drop (cf. Equation (8) of Chapter IV). As
the solvent increases, the volume of the drop will increase by:

dV' = ¥,dn, = 4nR*dR.

Then:
S 2V, dn, - 2V, dn,
R R
and
2,0
# dy-z—‘%ﬁ"l_ (10)

* We remark that the process can be assumed reversible. even though the pressures and the chemical
potentials of the solute are different on both sides of the membrane, because the latter is neither deformable
nor permeable to the solute.
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. Now we can equate the total variation of Gibbs function for the two paths con-
sidered (Equations (8) and (9)). Tt will be

r 2V (d
dn,R*TIn 22 = %—Hlﬁdnl
r 2V r
R*TInP* = R‘,“ — v, (11)

large mass without appreciable curvature at its surface: R = o0, py = p;, and

i’

v, = —R*Tin 7. (12)

L W (13)

MV, = —R*TIn N, (14)

?ubstiluting in Equation (11), we obtain:

e _ 2oV,

n 9 = R*TR +InN,. (15)

Pk 26'M
== ="
nP; R*TgR + In N,
PR _ e = N, exp(20'M/R*TgR). (16)

k-

In this formula, we must take into account that, if the solute is an electrolyte, its
- Concentration must be corrected by multiplying the number of moles n, by the van 't
:ilioﬂ“ factor i. Therefore, if N, is the molar fraction of the solute:

in, n,

Nz A , N: =
ny +in, ny, +in,

* Other current cxpressions_arc derived [rom this one [or dilute solutions, in which n, <€ n, and In N, =
Bin(l — N,)= —N..
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For dilute solutions of strong electrolytes, i is equal to the number of ions into
which each molecule dissociates. Thus, for NaCl, dissociated intoCl and Na™,i = 2.
For concentrated solutions, i can vary appreciably from this value.

We can replace N, in Equation (16):

in
Ny=1—N,=1- i
n, +in,
and for dilute solutions, in, <€ n,,
) in, im, M Q
Ny e i, SRER T 17
! %, M,(4/3)nR3 0 R? (H)
where m, is the mass of solute, M, its molecular weight, and
_ 3imyM
 4noM,

If the drop is not very small, the exponent in Equation (16) is small and we can
write:

26'M P
exp(2e M/R*TeR)y = 1 + —— =1
p(2a RRN= 1 + =
where
B 2a'M
N R*Tz_l :

Thus, for not very small drops of not very concentrated solution,

Pr P 0 P 0
. =1+ e ) 65 R 18)
A ps_( R)( Rs)_ R R {

where we have assumed that the terms P/R and Q/R* are both small.

The coefficient P depends on temperature and (through ¢') on the nature and
concentration of the solution. Q is almost independent of temperature (g is only slightly
dependent), but depends on the nature and mass of the solute; therefore, Q will be
constant for any droplet formed on a hygroscopic nucleus of a specified mass. which is
the important case for the physics of clouds.

If the concentration does not exceed about 1, we can assume ¢’ = . and P has the
value given in Section 1. As for Q, it becomes, writing i = 2 (mono-monovalent.
strong electrolyte):

0=86"2cm?
- M

If the solute is sodium chloride:
M, = 58.45 g mol '
Q0 =0.147 m, cm?

where m, 1s expressed in grams.
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Fig. V-2, Vapor pressure of NaCl solution drops, as a function of drop radius R, (r-1); supersaturation.
Numbers on curves indicate mass of NaCl.

Figure V-2 represents the saturation vapor pressure as a function of the radius R for
NaCl and T = 273 K: the different curves correspond to different values of the mass
m;. The upper. right-hand curve corresponds to pure water.

We can see in the figure that the curves pass through a maximum (except for pure
water). Let us consider a drop of large radius R containing a certain mass of solute n,.
Its vapor pressure will be very close to p, (r = 1). If we now assume that the water
gradually evaporates, R will decrease (we shift towards the left in the graph): the eficct
of curvature will become noticeable and, with it, the term P/R in Equation (18): pi will
increase approximately following the pure water curve, because the term Q/R* is still
very small. However, as R deccreases, this last term increascs as R °. while P/R
increases only as R™'. A stage will be rcached, therefore. where the term Q/R’
becomes first noticeable, then grows rapidly and soon becomes more important than
P/R: the curve diverges from that of pure water, passes through a maximum and then
decreases rapidly. The curve will finish at that value of the saturation ratio r corre-
sponding to the vapor pressure of the saturated solution of NaCl (r = 0.78): in this last
part (left branch of the curve) the approximation (18) ceases to be valid because the
solution is too concentrated.

If the solution drop is in an atmosphere kept at a value of r lower than the
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maximum of the curve, it will become stable with the corresponding value of the
radius R, as given by the curve. If » is higher than the maximum, the drop will start
growing indefinitely, while its vapor pressure py decreases along the right side of the
curve. In this sense, the values corresponding to the maximum, r. and R_, are critical
values for the activation of hygroscopic nuclei in the atmosphere, lcading to the
formation of cloud drops.

In order to obtain the critical values, we should differentiate Equation (16) with
respect to R and equate to 0. But it is easy to verify that the maximum is already in a
region in which the solution is dilute enough to apply the approximate Equation (18).
Differentiating the latter and equating to 0, we obtain:

30
R = / 1
which, substituted into Equation (18), gives:
2,/P?
ro=1+—"Y— (20)
3./30

Table V-2 gives the critical valucs for scveral sizes of sodium chloride nuclei, For
instance, a nucleus of 10 !° g will become activated with a supersaturation of 0.13%,,
in a drop of radius 0.62 um.

TABLE V-2
Critical activation values (drop radius and
supersaturation) for sodium chloride nuclei

s R. r.—1

(g) (rm)

{0 0.19 42 % 1077
10715 0.62 1.3x 10 ¢
{1 1.9 42 x 10°*
1071 6.2 1.3x 10 #
10712 19.0 42 x 10 °

5.3. Sublimation and Freezing of Small Crystals

We can make, step by step, the same derivation that we made for condensation in
Section 1, for the phenomenon of sublimation. Therefore we can write:

P R 205‘. ;W

In—= =
p. 2. R*TR

(21)

where pg and p_ are now referred to the solid, o, is the surface tension of the solid in
the presence of its vapor, and g_ is the density of the solid. This equation implies the
approximation of considering the small crystal as if it had spherical shape, because it
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“has been assumed that

d . dV.
Y =—dV.
R
If the relation between d.% and dV is different from 2/R, we should substitute this
factor in the formula by another factor which will depend on the shape of the crystal.
~ For the melting equilibrium (small crystals in cquilibrium with the liquid) a similar
~ derivation which will not be included here shows that the equilibrium temperature T
is lower than that corresponding to a macroscopic plane surface of the crystal (T;,).
~and the difference is given by the formula
—
T,— T= 2041y (22)
I[QsR
- where o, is the interfacial tension solid-liquid, [, is the latent heat of fusion, and the
~ shape of the crystal has been again approximated by a sphere of radius R. The
difference (T, — T) is very small, except for extremely small values of R; for example,
~ for ice, it reaches 1 K when R becomes equal to 0.036 um (accepting a value o, = 20
. dyn cm ! for the interfacial tension).

PROBLEMS

1. Calculate the radii of water droplets in equilibrium with an atmosphere whose

supersaturation is (a) 1%,: (b) 0.1%; (¢) 0.05%,. Assume a temperature of 0 C.

2. Consider a nucleus of NaCl of mass 3 x 10 '* g. Derive:

(a) The radius of a droplet containing this nucleus in solution. for which the vapor
pressure ¢, is exactly equal to that of pure water with a plane surface e,

(b) The critical radius, over which the nucleus becomes activated. The two results
will be in the order of magnitude of micrometers. You can use this fact to
simplify the calculations. The temperature is 0°C. The van't Hofl factor is i
=2

3. A water droplet containing 3 x 10~ ¢ grams of sodium chloride has a radius of 0.3
pum.

(a) Calculate its vapor pressure.

(b) If the droplet is in equilibrium with the environment, what is the supersatu-
ration (expressed in percentage) of this environment?

(Note: In computing molar ratios, each formula weight (‘molccular weight” My, )

of NaCl must be considered as 2 moles, because of the total dissociation in

solution; i.e. the van't Hoff factor is i = 2). The temperature is 25°C. At that
temperature, the saturation vapor pressure i1s e, = 31.67 mb.




