CHAPTER VIII

ATMOSPHERIC STATICS

In Chapter VII we have studied the behavior of individual air parcels when they
undergo certain physical transformations. We now turn our attention to several
general aspects related to the vertical stratification of the atmosphere and then, in the
next chapter, to the vertical stability of the atmosphere. By ‘vertical’ we mean that the
atmosphere will be considered above a certain location on the Earth’s surface.
generally taking into account neither the horizontal motions due to the Earth's
rotation and to horizontal gradients of pressure, nor the large-scale vertical motions.

In this chapter we shall study hydrostatic equilibrium, several cases of ideal atmos-
pheres, and the calculation of heights. We shall use only one coordinate z, in the
vertical direction, increasing upwards, with its origin at mean sea level. We shall
assume that the state variables remain constant for a constant z; that is, the isobaric.
isothermal and equal humidity surfaces will be horizontal.

8.1. The Geopotential Field

Every system in the atmosphere is subject to the force of gravity. This is the resultant
of two forces: (1) the gravitational attraction per unit mass f, in accordance with
Newton’s universal law of gravitation, and (2) the centrifugal force, which results
from choosing our frame of reference fixed to the rotating Earth; this much smaller
component is equal (per unit mass) to w’r, where w is the angular velocity and r the
distance from the axis of rotation. The vector sum g is the force of gravity per unit
mass, or simply gravity (see Figure VIII-1):

g=1+o’r. (n
If we call R the radius of the Earth (i.e., the distance from the center of mass to
the surface), we must take into account that R varies with the latitude ¢, due to the

ellipticity of the Earth. The values are maximum and minimum at the Equator and at
the Poles, respectively:

Requator = 6378.1 km
Rpy. = 6356.9 km.

From the inverse-square law of universal gravitation, it follows that the variation of
J/=|f| with altitude over a given location on the Earth’s surface can be expressed by
R2
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Fig. VIII-1. Forces in the geopotential field.

where f; is the value of f at mean sea level and £, is the value at an altitude z above
mean sea level. Thus

P z z
fzzfo(l + E) =f0(l _ZE + ...);fg(l - ZE) (3)

For the purpose of introducing R into Equation (3), an average value can be used and

thus
fo= fo(1 =314 x 1077 2) (4)

with sufficient approximation (z in meters).

The gravity g at sea level varies with latitude due to the centrifugal force and to the
ellipticity. As w?*r < f, the angle between g and fis very small and we can write from the
cosine theorem (see Figure VIII-1)

2,.3\2 2 bt
()
9¢.0=fo|:l +(__r) —2£cosqo:| =~ fo — w?rcos g (5)
Jo fo
where g, o means gravity at latitude ¢ and sea level. Or, considering that r=R cos¢
Jo0=fo— w*Rcos* . (6)
At ¢ =457,
gas,o = fo — 40’R. (7)

Eliminating £, between Equations (6) and (7), we find
99,0 = Has0 — EwlR cos 2. (8)

As R is approximately constant, Equation (8) indicates that the centrifugal term is
proportional to cos 2¢; it amounts to —1.7 cm s~ ? at the equator, 0 at 45° and
+1.7cm s 2 at the poles.

The variation of g with latitude due to ellipticity includes the effect of variation of
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distance from the mass center (which attains a maximum of 21 km between the equator
and the poles) and the effect of a non-spherical distribution of mass. The former
would imply a difference in gravity of 6.6 cms 2 between the poles and equator, and
the latter partially compensates this difference. Both may be taken into account
together with the centrifugal term by adjusting the coefficient of cos2¢ in Equation
(8). Thus the following approximate formula for the dependence of g on latitude may
be written:

Ge.0 = Gas,oll —0.00259 cos2¢p). 9)

We consider now that because g differs little from f the same correction factor for
altitude of formula (4) (expression between brackets) can be applied to it:

Goe=0Gooll —3.14 x 1077 2) (10)
and introducing Equation (9), we finally obtain
Go,. = Gasoll —a, cos2¢)(1 —a,z) (11)
where
a, =259 x 1073
a,=314x 107" m™!
Gaso=9.80616 ms *,

As Equation (11) indicates, gravity at mean sea level varies from 9.78 m s 2 at the
equator to 9.83 m s~ Z at the poles.

More complicated expressions have been developed and must be used for accurate
estimates of the gravity, which also depends slightly on local topography. Meteorol-
ogists use the so-called meteorological gravity system, which gives values very slightly
different from the Porsdam system, widely used in geodesy. These differences need not
concern us here. More accurate formulas than (11) to calculate local values of the
acceleration of gravity can be consulted in the WMO Tables (sec Bibliography).

A standard value at sea level g, has also been adopted for reference. It is

go=9.80665ms ™ *. (12)
If a unit mass moves in the gravitational field, the force of gravity performs a work
ow=g-dr = g cos@ dr (13)

where dr is the displacement, 6 the angle it forms with g, and the dot between the
vectors indicates a scalar product.
Experience shows that when the mass returns to its original position

Ef])g-dr=0. (14)
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This property is expressed by saying that the gravitational field is conservative. It
follows from Equation (14) that dw is an exact differential that defines w as a point
function. It is preferred, however, to define it with opposite sign, and it is called the
geopotential ¢. The conservatism of the gravitational field is also expressed by saying
that g is a force derived from a potential.

We shall have, in general

¢ =d(x, ¥, 2),
d¢p = — g-dr (exact differential), (15)
Ap = — | g-dr,

where A¢ is independent of the integration path. As ¢ depends only on the alttude
z,* these expressions simplify to

¢ =¢(2)
d¢ =gd: (16)

Ap = | gdz=gdz.
The second one says that the gravity is given by the geopotential gradient. The last
approximate equation indicates that, as g varies little with z, it may be taken for many
purposes as a constant.
As a point function, ¢ is defined except for an additive constant. We fix it by
choosing zero geopotential at mean sea level:

$(0) =0, (17

so that

rb(z):Jgd:;g:‘ (18)
(1]

8.2. The Hydrostatic Equation

In a state of equilibrium, the force of gravity is everywhere balanced by the pressure
forces, whose resultant is opposite to it. Let us consider a layer of thickness dz in a
column of unit area (Figure VIII-2). A force p acts on its base, directed upwards,

* If zis measured along a line of gravity force, i.e., along a line parallel at every point to g, it will follow
a slightly curved line. This deviation from a straight line is however negligible for most purposes.



160 ATMOSPHERIC THERMODYNAMICS

p+dp
Z+dz

[p

Fig. VIII-2. Pressure variation in vertical.

while a downward force p+dp acts on the top. Therefore a net force —dp is acting
upwards on a mass g dz. The force of gravity is go dz. As they must cancel:

dp= —godz
or
dp
= = _ 0. 19)
5 g (

This is the hydrostatic equation for the simple case when p=p(z). The isobaric
surfaces, as well as the equipotential surfaces, are considered here to be horizontal.

If we compare Equations (16) and (19), we have for hydrostatic equilibrium the
equivalent expressions:

dp=—pd¢ (20)
and
de¢ = —vdp. (21)
Integration of Equation (21) gives:
- S 1
Agbz—-J‘L'dp:—J Rlenp=—RdJ T,dIlnp. (22)
1 1 1

In order to perform this integration, we must know the virtual temperature T, as a
function of the pressure p. We shall consider this problem in Section 5 for a particular
kind of atmosphere, and in Section 11 for the general case.

8.3. Equipotential and Isobaric Surfaces. Dynamic and Geopotential Height

The geopotential field may be described by the equipotential surfaces; the thickness,
hg, of a layer of unit geopotential difference, 4¢, will be given by:

A¢p = ghy = 1 unit of geopotential. (23)
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¢ has dimensions of energy per unit mass or specific energy. In the MKS system the
units are J kg~'= m? s~ Thus, with g = 9.8 m s~2, Equation (23) gives

hy=0.102m. (24)

Therefore approximately 1.02 m (the exact value depending on that of g) correspond
toadifferencein geopotential of 10J kg~ !; thisequivalence suggested at one time the use
ofanotherunitfor thespecificenergy,called the dynamic metre,whichmay be abbreviated
dyn-m and was defined by

ldyn-m = 10J kg™ ', (25)

The dynamic kilometre (dyn-km) or other similar units could also be used; they bear
the same relations among themselves as the corresponding units of length. The value
of ¢ in these units has in the past been frequently referred to as the dynamic height
or dynamic altitude. They are seldom encountered in meteorology at the present time.

Itisnow customaryinmeteorology toexpress the geopotential as geopotential altitude.
As a physical quantity this is again identically the geopotential, but expressed in units
called standard geopotential metres or, more simply, geopotential metres (gpm). The
conversion factor has the numerical value of the standard gravity |go| = 9.80665:*

1 gpm = |go| J kg ™! (26)
Thus the geopotential can be written
o 1 7}
¢=|gdz(Ukg ") = —| gdz(gpm) = ——z (gpm) (27)
9ol |gol
0 0

andiscalled ‘geopotential altitude’ifexpressed in gpm or any multiple of this unit (such as
gpkm = geopotential kilometre). In the last expression, g is the average value of g in the
integration interval. As §/|g,| is numerically very close to unity (within a fraction of 1%,
anywhereinthetroposphere),itisobviousfrom Equation(27)thatthe numerical valuesof
the geopotential in gpm (i.e., the geopotential altitude) and of the altitude in m are almost
equal.

Summarizing the equivalent expressions of geopotential in different units, we have:

= azlk —1=_§_ =i s 28
¢ =gzlkg |go|zgpm 10zd}fnm (28)

z

where gz = Jg dz and z is given in metres.

1]

[t must be stressed that neither the dynamic meter nor the geopotential metre are units

* Until 1971, the convention used in meteorology was to take a conversion factor equal to
98 (kg™ ') gpm ™! (exactly).
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oflength, but units of geopotential. i.e., of specificenergy. Neitheris the ‘dynamicaltitude’
orthe ‘geopotential altitude’ a length, but identically the geopotential, the word ‘altitude’
merely referring to the type of specific energy units used (dyn-m or gpm, respectively).

If we introduce the expression (10) to calculate the average value g between mean sea
level and z, we obtain

Z

1
J =—.|’gdz = E‘;‘EJ‘(I —314 x 1077 2)dz
z
0

0

=go.oll —1.57 x 1077 2) (29)
and
¢=T’L‘I’:(1—1_57x 1077 2) (30)
9o

(z in metres).

In general, the ratio g/|g,| in formula (27) will differ from unity by less than 0.27,.
It is customary in meteorology to use the geopotential height rather than geometrical
height for the representation of the state of the free atmosphere. for a number of
reasons, theoretical as well as practical. In the first place, in most dynamic equations
the differential of height is associated with the acceleration due to gravity as a product.
and g dz can always be replaced by |go| d¢ with ¢ in geopotential altitude units. This is
particularly true if isobaric coordinates (x, y, p, t) are used (as is now standard), where
position in the verticalis defined by the pressure. In the second place, true or geometrical
height is never required and is seldom measured; this is partly because of the central
position of pressure (or related parameters) as an indicator of position in the vertical.
Finally, the computational advantages of ¢ over z virtually necessitate the use of
geopotential height.

When the foot is used as a unit of length, the exact equivalences | ft=0.3048 m and
1 gpft=0.3048 gpm are adopted, where gpft stands for geopotential foot.

The thickness /,, between isobaric surfaces separated by a unit pressure difference.
can be similarly calculated from Equation (19):

Ap = ggh, = | unil of pressure

h,=—=-. (31)
ge g
But in this case v, and therefore A,, vary rapidly with p, and therefore with height.
At 1000 mb, v is about 0.8 m* kg™ !, and 4,=0.08 m (for 1 Pa=0.01 mb); it follows
that in the layers near to the ground, the pressure drops with height at a rate of
100 mb for 800 m. As we rise in the atmosphere, the unit layers become thicker.
By comparing Equations (23) and (31), we obtain

h, = vh,.
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8.4. Thermal Gradients

. The vertical temperature gradient or lapse rate may be defined by the derivative

B=—dT/dz. (33)

However, it is also convenient to define it in the atmosphere with respect to the
geopotential:

(34)

‘We shall use this last definition.
It should be noticed that altough both parameters are proportional and have close

numerical values (if dynamic or geopotential heights are used for¢), they are two
physical quantities of different kind. The first definition (f) gives the decrease in the
absolute temperature with height, and its units are K m ' (in MKS system). y gives
the decrease of temperature with the geopotential, and is measured in Ks*m™?
in MKS system, although it is customarily expressed, for convenience, in degrees per
unit of geopotential height (K gpm ! or K gpft 7).

Starting from the virtual temperature, a lapse rate of virtual temperature y, is

similarly defined:
dT,
do¢
Other expressions for y, may be derived if we take into account Equations (18), (21)
and the gas law:

(35)

=

14z,

- 4%, _ 1 dinT (36)
q 4

dp R, dlnp’

1

W= Eh
P

We remark now that these derivatives and differentials may refer: (1) to the varia-
tions undergone by an air mass during a process, for instance during an adiabatic
ascent, and (2) to the variations in the values of the static variables along the vertical
for an atmosphere at rest. We shall call the first ones process derivatives or process
differentials, while we shall refer to the latter as geometric derivatives or geomeiric
differentials. We shall only be concerned in this chapter with geometric variations.

8.5. Constant-Lapse-Rate Atmospheres

We shall now consider the case of an atmosphere with constant lapse rate 7, (of virtual
temperature), for which 7, decreases proportionally with ¢. This is a particularly
important case inasmuch as it is the obviously simplest way to approximate a real
atmosphere. As in general, in the troposphere, temperature decreases with height,
¥, is usually a positive quantity.
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We write for z=0 (mean sea level):
]} = j;u) p = Po ] (b o 0‘

We find T, = f(¢) by integrating Equation (35) from mean sea level to any height:

I,=Ty—ye
or
T -
L) (37)
Ea T

i.e., the virtual temperature decreases linearly with the geopotential, or, if we neglect
the small variation of g, with the altitude.
From Equation (36) we obtain:

dInT,=Ryy,dlnp, (38)

which contains the hydrostatic equation, and integrated gives 7, = f(p):

Ratv
L _ ( ¥ ) : (39)
’I;'g Po
and by eliminating (T,/T,,) between Equations (37) and (38), we obtain p = f(¢):
1/Ray+
p= Pa|:1 - "“‘f"] . (40
L

Thus, Equations(37),(39) and (40) relate the variables T,, pand ¢. Equations(39)and (40)
are the result of integrating the hydrostatic equation for the particular case
7y = const. It may be noticed that, dimensionally, [y,] = 1/[Ry4].

If we consider dry air (for which T, = T) and compare formula (39) with Chapter 1L
formula(61),weseethat theformulasareequivalentifwesetk = (n — 1)/n = R,y,,i-e..the
formulas for an atmosphere with constant lapse rate are similar to those for polytropic
processes. However, they describe here the geometric distribution of temperature and
pressure rather than variations during a process.

We can see from Equations (37) and (40) that p and T, become O for ¢, = T, /7.-
This is therefore called the limiting geopotential height of an atmosphere with constant
lapse rate (we prefer this terminology to the simpler term geopotential height, which
1sopen to some ambiguity). For this idealized model atmosphere, there will not be any air
for ¢ > ¢,.

We shall now consider three special cases of constant-lapse-rate atmospheres.

8.6. Atmosphere of Homogeneous Density

Ify,=1/R,=34.2 K gpkm !, from Equation (38) and the gas law relationd In T, =
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=d Inp+d Inv, it follows that dv=0. This atmospheie has therefore a homogeneous
density. It is sometimes called the ‘homogeneous atmosphere’, although only density
is constant, while temperature and pressure vary with height.

Equations (37), (39) and (40) simplify to

T,=T., — ¢/Rq (41)
Tw/ T\"g s P/{Pu (42)
p = po(l — @¢/R4T,) (43)

where the second one is simply the gas law for constant density; and the limiting
geopotential height is

& = RdTm-

If T,,=273K, ¢,=7990 gpm. We shall see later that the lapse rate never reaches this
value in the real atmosphere, except for very shallow layers over a strongly heated
surface.

8.7. Dry-Adiabatic Atmosphere

- We consider now an atmosphere with a lapse rate:
Y= 1/c,, =4 =9.76 K gpkm~".
Equation (39) becomes

T= T (f) (44)
(1]

which coincides with one of Poisson’s equations describing the adiabatic expansion
of dry air. The geometric distribution of temperature for this static atmosphere is
therefore described by the curve followed by the adiabatic expansion process of a
parcel of dry air. It will be characterized by the virtual potential temperature:

*d
0. = Tva(woo mb) (45)
Po

which is constant throughout the whole atmosphere, as can be verified by introducing

- Equation (44) into the expression of 0, for any T,, p.
Equations (37) and (40) become:

T,=T,— dlcy,, (46)

and

| 1/%a
| p=m0— ® ) (47

¢pu Lo
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and the limiting geopotential height is:

¢'l a cr—'dnu »
If 7,,=273K, ¢,=27 950 gpm.

8.8. Isothermal Atmosphere

We assume:
Po=0, T,=T,, = const.

Integration of Equation (21) gives:

¢ = -J pdp=— R,T,, InZ (48)
Po
or

p=poc *fTr = p,e¥*T (49)
Therefore, in this case, pressure decreases exponentially with height, and tends to 0

when z—cc. The limiting geopotential height of this atmosphere is thus infinite.
The expression (49) can also be written

- R _ e e -
p=pge eMaz/R*T, = pye gMz/R*T _ Poe€ z/H {:\{““

where M, is the average molecular weight of dry air, M is the average molecular weight of
the air in the atmosphere and we have defined the parameter
R - R*T

H = . (31)
gM, gM

which is called the scale height and represents the altitude at which the ground pressure
becomes reduced by the factore " *. H is a constant for an isothermal atmosphere, if the
variation of g is neglected. When T varies with height, H can no longer be considered
constant. In that case one can speak of a “local’ scale height: for instance, the geopotential
height of the atmosphere of homogeneous density (Section 6) corresponds to the value at
the ground of the scale height: H, = ¢,/g = R*T, /gM.

8.9. Standard Atmosphere

Of the particular cases which we have considered, the atmosphere of homogeneous
density has only a theoretical interest, and the isothermal atmosphere is only applicable
tolayers with aconstant temperature. In the lower stratosphere, thisis frequently a useful
approximation, especially at high latitudes, but in the troposphere is seldom valid except
for relatively thin layers. In this latter domain, the adiabatic atmosphere is of more
practical importance, since it gives, as we shall see, an upper limit for the value of the lapse
rate of a vertically stable atmosphere, and has also the temperature distribution of a
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vertically-mixedlayer(cf. Chapter VII,Section 12). But thereal atmosphere hasalways on
the average lower values of y and, although this is in general not constant with height, we
may defineanatmosphere witha constantlapserate whichapproximatesthereal average
case (for the troposphere).

Thus several ‘standard atmospheres’ have been defined, which are particularly
important in aeronautics, where they are used for reference as an approximation to the

- real atmosphere, and for calibrating and using altimeters.

We give here the basic definitions of the standard atmosphere adopted by the

- International Civil Aviation Organization (ICAO). These are stated using an altitude

H' corrected for the variation of g, according to the expression

o 900

Here g, is the standard value of gravity, while g is the actual value, depending on
latitude and altitude. The formula is similar to Equation (27), but here g, retains its
dimensionsasanacceleration,and therefore Hisareallength. Obviously Hisnumerically
equal to the geopotential ¢ expressed in geopotential height units. As we have seen in
Section 1, g decreases by about 0.3%, for a 10 km increase of altitude. If we disregard the
variations of g, H = z. The conditions defining the standard atmosphere are:

(1) Atmosphere of pure dry air with constant chemical composition in the vertical,
with mean molecular weight M =28.9644 (C!? scale).

(2) Ideal gas behavior.

(3) Standard sea-level value of the acceleration due to gravity: g, =9.80665 m s~ 2.

(4) Hydrostatic equilibrium.

(5) At mean sea level, the temperature is 7,=15°C=288.15K and the pressure
Po=1013.25mb=1 atm.

TABLE VI1I-1
Standard atmosphere
p(mb) H(m) T(°C)
1013.25 0 15.0
1000 110 14.3
900 990 8.6
800 1 950 23
700 3010 — 4.6
600 4 200 . 5
500 53570 ~— 212
400 7 180 ~31.7
300 9 160 —44.5

226.3 11 000 — 56.5
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(6) For values of H up to 11 000 m above mean sea level (tropopause) the lapse rate is
constant and given by o = —dT/dH = 65K km .

(7) For altitudes H = 11000 m (stratosphere) and up to 20000 m, the temperature
is constant and equal to —56.5°C. Then the lapse rate becomes —1.0K km ™", up to
32000 m.

Table VIII-1 gives some values of p, H and T for this standard atmosphere.
According to Equations (37), (39) and (40), the relations between T, p and ¢
(or H), are given for the standard atmosphere up to 11000 m by

T=T,— B,H =288.15—-65x 10°H (53)
Rafn/go 0.1903
T= To(ﬂ) = 233.15( 2 ) (54)
Po 1013.25
BOH go/Rafo
— =
P PU( A )
= 1013.25(1 — 2.255 x 10~ SHJS'”" (55)

where Tisgivenin K, pinmband Hinm. Itmay be noticed that, as H and the geopotential
altitude are numerically equal, and so are y, and f3,, if the former is the corresponding
lapse rate of the standard atmosphere expressed in K gpm ~ !, ¢ in gpm can be written for
H in the previous formulas, without further change (foH = y,¢, where y, = 6.5 K
gpkm 1),

8.10. Altimeter

Because of its practical importance, we shall describe the altimeter used in airplanes to
determine the height at which they are flying, and the corrections that must be made to
its readings.

The altimeter is an aneroid barometer with two scales, which we shall call the main
scale and the auxiliary scale. They correspond basically to two different ways of
measuring the pressure. A mechanical transmission measures the effect of pressure on
the barometer by the position of hands moving over the main scale. This is schemat-
ically represented in Figures VIII-3a—c by the position of a pointer. An alternative
way of measuring the pressure is by using the auxiliary scale and a compensation
method. The auxiliary scale is actually covered except for a window with an index
showing the reading matched to the zero of the main scale (see figure). Tt is graduated
in pressure units, in such a way that the reading is the correct pressure on the baro-
meter when the hands read zero on the main scale. This situation is obtained by shifting
the scales appropriately, and is indicated in Figure VIII-3a; in the real instrument the
main scale and the window are actually fixed and it is the auxiliary scale and the hands
that rotate simultaneously (rather than the main scale, as shown for convenience in
the figure). The real scales of the instrument look like the sketch in Figure VIII-3d.
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(b)

Fig. VIII-3. Altimeter scales,

The reading on the auxiliary scale matched to the zero on the main scale is called the
altimeter setting or Kollsman number; this is p, p, and P in Figure VIII-3a, b and c.
respectively.

The main scale is not graduated in pressure units, but in altitude units, related to the
pressure by Equation (55). Therefore, if the altimeter setting is p,=1013.25 mb, the
hands will show the correct altitude on the main scale when used in a standard
atmosphere. In particular, they willshow zeroaltitudeat 1013.25 mb. Thisis thesettingin
Figure VIII-3b. The reading H(p), corresponding to any pressure p, is called the pressure
altitude or standard altitude. It is the correct altitude of the isobar p in the standard
atmosphere and coincides therefore with the value of H from Equation (55). For any
particular setting different from p,, the hands on the main scale at any moment indicate
the difference of actual pressure from that of the setting, in altitude units H; this reading
will be the real difference in altitude if the atmosphere is standard.

Ifthealtimeterissetat p, whilebeingusedinanatmospheredifferent fromthestandard,
inthat zero altitude corresponds to another pressure P, the readings will beinerror. Thus
if the real altitude of a station with pressure pis Z,clearly Z #+ H(p)unless the atmospherc
is standard. In order to match the readings Z and p, we have to displace the zero altitude
(Figure VIII-3c)so that it will correspond to a pressure Pin the standard atmosphere for
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an altitude (H(p) — Z). If an aircraft obtains information about the value of P from an
airport and sets its altimeter accordingly, the reading will give the altitude of the airport
when landing.

The procedure for obtaining the altimeter setting P is therefore:

(1) Obtain H(p) from the actual pressure p at the station, by using a standard
atmosphere table or Equation (55).

(2) Subtract the true altitude of the ficld Z.

(3) Obtain the altimeter setting P from (H(p) — Z) through a standard atmosphere
table or Equation (55).

This pressure correction is equivalent to approximating the atmosphere over the
station by a standard atmosphere where a constant has been added to all pressures,
the constant being chosen so as to make p correspond to Z.

Conversely, if instead of setting the altimeter to P, it is set with zero altitude at p,.
the correction to be added to any reading z above the station would be D = z — H(p).
sometimes called the ‘D factor’.

The pressure correction has to be determined carefully as the values of z are very
sensitive to small pressure variations. According to Equation (55), an error of 1 mb
in p will give an error of 8 to 9 m in z,

To explain the temperature correction, let us assume that the station is at sea level,
and its temperature is T, instead of T,,=15°C. The average lapse rate of the atmo-
sphere f up to the flying level will also be different in general from the standard value
Po. If the altimeter is set at the standard pressure p,, its reading z’ will be given by
Equation (55), which may be written

-"\80/RaBa
P=Po( —‘B'i) . (56)

Here p is the actual pressure and the difference between actual (z) and corrected (H)
altitudes is neglected, for simplicity. If we approximate the real atmosphere by an
atmosphere with constant lapse rate f}, the relation between the pressure p and the real
altitude z will be given (from Equation (40)) by

ﬁz)soihﬁ
P=po[l—= .
( ¥

Equating these two expressions and solving for z, we obtain

¢ ' B/ Bo
z=5[1_(1—£) ] (57)
B T,

If z is not large, f,z'/T, and fz/T;, may be considered small relative to unity,*
the exponential within the bracket in Equation (57) can be developed and only the
first order term retained:

* Even for large z this ratio will not exceed about 0.25.



ATMOSPHERIC STATICS 171

Ta[ B Boz' } Tyz'
e (R Y o ) R (58)
ﬁ )GD T{J TO
or
( AT)
z=z(14+— (59)
T

which gives the correction by a simple formula (47=T,—T,).

It may be remarked that differences in lapse rate from the standard value have little
influence on the correction, because they only enter in second-order terms in the
previous development, so that they do not appear in the first-order approximation (59).

This correction may be in appreciable error if there are discontinuities in the atmo-
sphere, as when the aircraft is flying above a frontal or a subsidence inversion. Tt
should also be remarked that the temperature correction is much less critical than the
pressure one, because it is proportional to the altitude and thus it becomes zero on
landing, whereas an error in the setting will give an additive difference at all altitudes.
With respect to the error during flight, for a given difference of pressure between
ground and the aircraft, the altitude over the ground will be larger than the indication
if T> T, because the intermediate atmosphere is less dense than the standard.

8.11. Integration of the Hydrostatic Equation

Formulas (39) and (40) give the result of integrating the hydrostatic equation for the
particular case in which y, is a constant. The important problem arises now of finding
a convenient method for obtaining the pressure (or the temperature) as a function of
the geopotential ¢ (or of the altitude z) in any real atmosphere: that is, a convenient
method for integrating the hydrostatic equation. This is easily done with an aerologi-
cal diagram, as we shall see, by a summation over successive atmospheric layers.
Let us consider formula (22):
2 2

-

A¢=_Jvdp=—jRTd[np=—RdJ T.dInp. (60)
i 1 1

This is the same integral that appears in Chapter VI, Equation (17), whose graphical
determination was explained in Chapter VI, Section 11. It should be realized that its
meaning is now different. Here 4 ¢ depends on the geometric structure, so that dp
is a change of pressure with height in a static atmosphere; in Chapter VI we were
considering a reversible process undergone by an air parcel. However, the value of the
integral will be the same in both cases, provided the path of the parcel is represented
by the same curve describing the geometric change of properties in the static atmo-
sphere. Therefore, we can apply the same methods described before. Thus

=

— | L,dnp=3__ (6l)

[t
1
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according to Chapter VI, formula (20) and with the same meaning of the area ¥ s
which can be determined by any of those methods. The mean isotherm method wil|
give

A¢: - RdTv ln&=RdZ=m (625

P

(where we might substitute RT for R4T,). For each pair of chosen isobars p,, p,
this depends only on T, and can be printed for convenience on the diagram. The
mean adiabat method gives the formula (cf. Equations (60), (61) and Chapter VI,
Equation (26)):

A= (1) = T}') = ¢, (T{' — T3)
= 1005(T;" — Ty) T kg™ " = 102.5(T)" — T}') gpm (63)

where T{" and T3", as in Chapter VI, Section 11, are the temperatures of the intersec-
tions of the mean adiabat with the isobars p, and p,.
If a tephigram is used, we could apply again the relation

P2 2
N

A = _J vdp= — Ah +q=-—cpdT+CDJ Tdilnt =
1 1

=c,(—AT+Y,) (64)

(cf. Chapter VI, Equations (18) and (28)). But it will be more convenient to use the same
methods as for the emagram, as explained in Chapter VI, Section 11 (cf. Chapter VI,
Equation (31)).

With these procedures, the curve ¢ =f(p) or z=f(p) can be computed and plotted
on a diagram, on the basis of the state curve 7=f(p) representing the vertical structure
of the atmosphere (the sounding). The procedure will follow the construction of &
table such as Table VIII-2. The starting value will be the known altitude z, of the station,
where the pressure is p,. The sounding is then divided in layers between succes-

TABLE VIII-2
Computation of altitude
i

i Pi I;z = 5 "'% iz
0 ps I - *:

1 I SR 2

A,z
2 P2 IZ_ Iz
3 i Z3
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sive isobars p;. generally at intervals of 5 or 100 mb. Equation (60), applied
to the first layer between p, and p,, will give 4,¢ and therefore 4,z=z, —z; this
computation is performed graphically by any of the procedures described. The altitude
of the isobar p, will be given by z, =z, + 4,z. Then the second graphical integration is
performed on the second layer; the result, 4,z, added to z,. will give the altitude z,
of the isobar p,. And the procedure is continued along the whole sounding. The alu-
tudes z, can then be plotted on the same diagram, as a function of p;, using an auxiliary
scale for z.

The altitude curve has only a small curvature on an emagram or a tephigram.
because the temperature varies slowly and thus ¢ or z is roughly proportional to Inp.
The vertical dimension, normal to isobars on the diagram, is therefore roughly pro-
portional to height in the atmosphere.

It must be emphasized that these calculations are to be performed with the curve of
virtual temperature as a function of pressure. In aerological practice, the relative
humidity atanylevelisconverted to thecorresponding mixing ratio, and from the latteris
computed the so-called virtual temperature increment, AT, = T, — T, which is given
from Equations (72) and (75) of Chapter 1V, with sufficient accuracy, as AT, = 0.6rT.

It may be of interest to compute what would be the pressure at mean sea level at the
location of a station of height ¢, should the atmosphere extend to ¢ =0; ortoestimate
the pressure at any other close level. This problem arises in routine meteorological
practice in the production of mean-sea-level (m.s.l.) pressure values for a ‘surface’
chart. Since pressure values (at a constant level) are useful in the diagnosis of wind fields
(at that level) and in the synoptic appreciation of weather systems, it is necessary (o
‘reduce’ ground pressures to a reference level (chosen as mean sea level) in order to
construct meaningful isobars. The procedure to be described below is reasonably
satisfactory if station heights and temperatures are themselves relatively smooth
fields in the horizontal, especially at elevations not in excess of | km. Let us consider
the above problem, assuming that ¢, >0. The computation is made by considering a
fictitious atmosphere from ¢ =0 to ¢,; to it is assigned a lapse rate equal to y,/2,
as a reasonable mean value. The temperature 7, and pressure p, at mean sea level
are then computed from

To=T,+%¢, (65)
2
Yade |-
Po=p ( sz)

Here it is customary to take for 7. an average value in such a way as to avoid the strong
variations close to the ground. due to its daily warming and cooling by radiation.
These variations are shown in Figure VIII-4. T  istaken as the average between the actual
value and that of 12 hours before:

7-:i.;lciu'.tl sl Ts. —12hs s

2

T, = (67)
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Fig. VITII-4. Computation of ‘mean-sea-level pressures’ by considering a fictitious atmosphere.

The additional temperature for reduction to m.s.l. is given by the dotted line of lapse
rate y4/2. To compensate for the substitution of BC or BC' by BD, which alters the
contribution of this layer to the pressure, a profile ABDEF or ABDEF' is assumed.
whereby the peculiar stratification near the ground is transferred to the fictitious

ground at sea level.

1. Find the dry adiabatic lapse rate, in K gpkm ™!, for an atmosphere composed

ATMOSPHERIC THERMOD YNAMICS
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inversion due fo
radiative cooling

high lapse rate
due to insolation
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PROBLEMS

entirely of Ar. The atomic weight of Ar is 39.9.

2. An aircraft is flving at 1000 m of altitude. The temperature 7, is 15°C and the
pressure p, 894 mb. (a) Assuming that the mean lapse rate y, below the aircraft is
8.5 K gpkm ™', find the pressure p, at mean sea level. (b) Derive an expression to
estimate the relative error in p, for a given error in y,. (c) What is the error in pg

if the real mean lapse rate if 6.5 K gpkm ™ '?

3. The sounding of an atmosphere between 850 and 700 mb is represented by the

points:

p(mb)

T("C)

850
500
750
700

8.0
3.0
4.0
1.0
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Plot these data on a tephigram, and compute the thickness of the layer by the
methods of the mean isotherm and the mean adiabat.

. The layer between 1000 and 900 mb has a constant lapse rate, with +3°C at the
base and —3°C at the top. Derive its geopotential thickness by several approxima-
tion methods, using a tephigram, and express it in gpm, in dyn-m and in J kg™'.
. Whatisthe height where the horizontal pressure gradient vanishes, when the pressure
gradient at the Earth’s surface, where p = 1000 mb, is 0.011 mb km ! and the
temperature gradient at the same level 0.025 K km ™ '? The pressure gradient and the
temperature gradient are directed in opposite directions, and the horizontal temper-
ature gradientshould be considered asconstant with height. The average temperature
in the vertical is T = 272 K. Treat the temperatures as virtual temperatures. (Hint:

consider the layer thickness from the surface to the requested height.)



