UNITÉS

Nous utilisons le système international d'unités (SI). Ce système cohérent d'unités comporte actuellement les sept unités fondamentales suivantes: le mètre (longueur), le kilogramme (masse), la seconde (temps), l'ampère (intensité de courant), le kelvin (température thermodynamique), la candela (intensité lumineuse) et la mole (matière).

En météorologie on utilise de plus en plus le système SI, mais aussi le système CGS et autres unités hétérogènes.

Dans le tableau suivant, on trouvera l'équivalence dans les systèmes SI et CGS entre les principales grandeurs utilisées en sciences de l'atmosphère.

Grandeurs		Système SI		Système CGS		
Nom	Dimensions		Nom	Symbole	Nom	Symbole
Longueur	[L	,]	Mètre	m	centimètre	cm (10 ⁻² m)
Masse	[N	1]	Kilogramme	kg	gramme	g (10 ⁻³ kg)
Temps	[T	<u>'</u>]	Seconde	s	Seconde	s
Température	[θ]		Kelvin	K	Kelvin	K
Unités dérivé	es					
Vitesse = longueur par unité de temps	S	[LT ⁻¹]	mètre par seconde	m s ⁻¹	centimètre par seconde	cm s ⁻¹
Accélération = vitesse par uni de temps		[LT ⁻²]	mètre par seconde au carré	m s ⁻²	centimètre par seconde au carré	cm s ⁻²
Force		[LMT ⁻²]	Newton	$N = m kg s^{-2}$	Dyne	dyn (10 ⁻⁵ N)
Pression		[L ⁻¹ MT ⁻ ²]	Pascal	Pa	Barye	- (10 ⁻¹ Pa)
Énergie		$[L^2MT^{-2}]$	Joule	J	Erg	erg (10 ⁻⁷ J)
Puissance		$[L^2MT^{-3}]$	Watt	$\mathbf{W} = \mathbf{J} \ \mathbf{s}^{-1}$	Erg par seconde	erg s ⁻¹

Autres unités utilisées en thermodynamique

Nom	Dimensions	Représentation symbolique	Unités
Flux, puissance	$[L^2MT^{-3}]$	ф	W
Densité de flux	[MT ⁻³]	φ	W m ⁻²
Conductivité	$[LMT^{-3}\theta^{-1}]$	λ	W/(m.K)
Coefficients d'échange	$[MT^{-3}\theta^{-1}]$	h, k	W/(m ² K)
Chaleur massique à pression constante	$[L^2T^{-2}\theta^{-1}]$	c _p	J/(kg K)
Masse volumique	[ML ⁻³]	ρ	kg/m³
Viscosité dynamique	[MT ⁻¹ L ⁻¹]	μ	kg/(m s) Poiseuille
Viscosité cinématique	[L ² T ⁻¹]	ν	m ² /s

Autres conversions utiles

Énergie

1 calorie 15 °C (cal₁₅) = 4,1855 J

1 kJ = 1 kW . s

1 kJ = 0.94782 Btu = 0.23885 kcal

1 Btu = 1,0551 kJ = 0,25200 kcal

 $1 \text{ kW h} = 3,60.10^6 \text{ J}$

1 Kcal = 4,187 KJ

Densité de flux d'énergie (énergie par unité de surface)

1 W m⁻² =
$$0.85985$$
 kcal h⁻¹ m⁻²
1 W ft⁻² = 10.763 W m⁻²

Flux, Puissance

1 Btu $h^{-1} = 0.2931 W$ 1 Kcal $h^{-1} = 1.163 KW$

1 HP = 0.7457 KW

Différence de température

1 °F = 0,555 °K

 $1 \, ^{\circ}\text{F} = 0.555 \, ^{\circ}\text{C}$

 $1 \text{ K} = 1 \,^{\circ}\text{C} = 1.8 \,^{\circ}\text{F}$

Pression

1 mb =
$$10^2$$
 Pa = 10^3 baryes
1 mm Hg = 1,333 224 mb ~ 4/3 mb

 $1 \text{ atm} = 101 \ 325 \ Pa = 1013,25 \ mb$

1 torr = 1/760 atm

Température

$$t$$
 (°C) = T(K) - 273,15
 t_F (°F) = 9/5 t (°C) + 32

$$t_{\rm C}$$
 (°C) = 5/9 [$t_{\rm F}$ (°F) - 32]

Échelles de température

Les échelles pratiques (échelles de Celsius, Farenheit) sont construites à l'aide de deux points fixes, dont chacun correspond à une température bien déterminée. L'échelle absolue, proposée par Kelvin, s'introduit naturellement grâce aux lois des gaz parfaits.

La température ordinaire *t* en degrés Celsius est liée à la température absolue par la relation suivante:

$$t$$
 (°C) = T(K) - 273,15 (K)

L'échelle Farenheit, t_F (en degrés Farenheit, °F), est définie par:

$$t_F = 9/5 t + 32$$

$$t_{\rm C} = 5/9 \ (t_{\rm F} - 32)$$

Facteurs de conversion pour la longueur

	mille (mi) terrestre	kilomètre (km)	Mètre (m)	pied (ft)	pouce (in)
1 mille =	1	1,609	1609	5280	6,336 .10 ⁴
1 kilomètre =	0.6214	1	10 ³	3,281.10 ³	3,937.10 ⁴
1 mètre =	6,214.10 ⁻⁴	10 ⁻³	1	3,281	39,37
1 pied =	1,894. 10 ⁻⁴	3,048. 10 ⁻⁴	0,3048	1	12
1 pouce =	1,578.10 ⁻⁵	2,540.10 ⁻⁵	2,540.10 ⁻²	8,333.10 ⁻²	1
1 centimètre =	6,214.10 ⁻⁶	10 ⁻⁵	10-2	3,281.10 ⁻²	0,3937
1 millimètre =	6,214.10 ⁻⁷	10-6	10 ⁻³	3,281.10 ⁻³	0,03937
1 micromètre =	6,214.10 ⁻¹⁰	10-9	10 ⁻⁶	3,281.10 ⁻⁶	3,937.10 ⁻⁵
1 nanomètre =	6,214.10 ⁻¹³	10 ⁻¹²	10 ⁻⁹	3,281.10-9	3,937.10 ⁻⁸
1 angström =	6,214.10 ⁻¹⁴	10 ⁻¹³	10 ⁻¹⁰	3,281.10 ⁻¹⁰	3,937.10 ⁻⁹

	centimètre (cm)	Millimètre (mm)	Micromètre (μm)	Nanomètre (nm)	Angström (Å)
1 mille =	1,609.10 ⁵	1,609.10 ⁶	1609.10 ⁹	1609.10 ¹²	1609.10 ¹³
1 kilomètre =	10 ⁵	10^{6}	109	10 ¹²	10 ¹³
1 mètre =	10 ²	10^{3}	10 ⁶	10 ⁹	10 ¹⁰
1 pied =	30,48	3,048. 10 ²	3,048. 10 ⁵	3,048. 10 ⁸	3,048. 10 ⁹
1 pouce =	2,540	25,4	2,540.10 ⁴	2,540.10 ⁷	2,540.10 ⁸
1 centimètre =	1	10	10 ⁴	10 ⁷	108
1 millimètre =	10 ⁻¹	1	10^3	10 ⁶	10 ⁷
1 micromètre =	10 ⁻⁴	10 ⁻³	1	10 ³	10 ⁴
1 nanomètre =	10 ⁻⁷	10 ⁻⁶	10 ⁻³	1	10
1 angström =	10 ⁻⁸	10 ⁻⁷	10 ⁻⁴	10 ⁻¹	1

Préfixes et notations des mul	
10 ¹² : téra, T	10^{-1} : déci, d
10 ⁹ : giga, G 10 ⁶ : méga, M	10 ⁻² : centi, c
10 ⁶ : méga, M	10 ⁻³ : milli, m
10^3 : kilo, k	10^{-6} : micro, μ
10^2 : hecto, h	10^{-9} : nano, n
10 ¹ : déca, da	10 ⁻¹² : pico, p