Transformations adiabatiques finies

Si la transformation est réversible, on peut la considérer comme une suite de transformations élémentaires quasi-statiques faisant passer à chaque fois d'un état (p, V, T) à un état (p+dp, V+dV, T+dT) et donc intégrer les relations (1), (2) et (3) :

- 1) Jeu de variables (V,T) : équation (1) $-pdV = C_v dT$ $-\frac{nRT}{V} dV = C_v dT$ $\frac{nR}{nc_{mol,v}} \frac{dV}{V} + \frac{dT}{T} = 0$ $\int (1-\gamma) \frac{dV}{V} + \int \frac{dT}{T} = cste$ $\ln V^{(\gamma-1)} + \ln T = cste$ $V^{(\gamma-1)}T = cste$
- 2) Jeu de variables (p,T), équation (2) $Vdp = C_p dT$ $nRT \frac{dp}{p} = nc_{mol,p} dT$ $\frac{R}{c_{mol,p}} \frac{dp}{p} \frac{dT}{T} = 0$ $\frac{(\gamma 1)}{\gamma} \frac{dp}{p} = \frac{dT}{T}$ $\int \frac{(\gamma 1)}{\gamma} \frac{dp}{p} \int \frac{dT}{T} = cste$ $\ln p^{(\gamma 1)/\gamma} \ln T = cste$ $\frac{p^{(\gamma 1)/\gamma}}{T} = cste$
- 3) Jeu de variable (p,V) : équation (3) $-\frac{dp}{p} = \gamma \frac{dV}{V}$ $\gamma \frac{dV}{V} + \frac{dp}{p} = 0$ $\int \gamma \frac{dV}{V} + \int \frac{dp}{p} = cste$ $V^{\gamma} p = cste$

Les relations s'appellent relations de Laplace et sont applicables seulement dans le cas des transformations **réversibles**, **adiabatiques** subies par des **gaz parfaits**.

$$TV^{\gamma-1} = cste$$

 $Tp^{(1-\gamma)/\gamma} = cste$
 $pV^{\gamma} = cste$
 $\gamma = C_p/C_v = c_{mol,p}/c_{mol,v} = c_p/c_v$

Pour trouver la constante on utilise les données du problème : Par exemple, dans le cas de la première équation $TV^{\gamma-1}=cste$, si on connait la température T_i et le volume V_i et le volume initiaux on trouve la constante : $T_iV_i^{\gamma-1}=cste$.