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where K,, is the eddy viscosity in the ocean (assumed constant). Ag
a lower boundary condition assume that v, v>0as z——. If K =
10 *m’s ' what is the depth of the surface Ekman layer at 45°N
latitude?

5.7. Show that the vertically integrated mass transport in the wind-drivep
oceanic surface Ekman layer is directed 90° to the right of the surface
wind stress in the Northern Hemisphere. Explain this result physically,

5.8. A homogeneous barotropic ocean of depth H =3 km has a zonally
symmetric geostrophic jet whose profile is given by the expression

uy= U exp{~(y/L)’]

where U =1ms"" and L =200 km are constants. Compute the vertical
velocity produced by convergence in the Ekman layer at the ocean
bottom and show that the meridional profile of the secondary cross-
stream motion forced in the interior is the same as the meridional
profile of u,. What are the maximum values of v and w if K, =
10 m*s™" and f=10"s"'? (Assume that w and the eddy stress
vanish at the surface.)

5.9. Using the approximate zonally averaged momentum equation

compute the spin-down time for the zonal jet in Problem 5.8.

5.10. Derive a formula for the vertical velocity at the top of the planetary
boundary layer using the mixed-layer expression (5.22). Assume that
[V|=10 ms™' isindependent of x and y and that i, = if,(y). If h =1 km
what value must «, have if the result is to agree with the vertical
velocity derived from the Ekman layer solution with De =1 km?

5.11. Show that K, = kzu, in the surface layer.

Suggested References

Arya, Introduction of Micrometeorology, gives an excellent introduction to boundary layer
dynamics and the elements of turbulence at the beginning undergraduate level.

Sorbjan, Structure of the Atmospheric Boundary Layer, is a monograph that provides a good
survey of the current state of boundary layer research at the graduate level.

Panofsky and Dutton, Armospheric Turbulence, has a good graduate level treatment of the
statistical properties of turbulence, as well as engineering applications.

Stull, An Introduction to Boundary Layer Meteorology, provides a comprehensive and very
nicely illustrated treatment of all aspects of the subject at the beginning graduate level.

Chapter

6 Synoptic-Scale Motions I:
Quasi-geostrophic Analysis

A primary goal of dynamic meteorology is to interpret the observed
structure of large-scale atmospheric motions in terms of the physfcal laws
governing the motions. These laws, which express the conservation of
momentum, mass, and energy, completely determine the relationships
among the pressure, temperature, and velocity fields. As we saw in Chapter
2, these governing laws are quite complicated even when the hydrostatic
:clpproximation (which is valid for all large-scale meteorological systems)
is applied. For extratropical synoptic-scale motions, however, the horizontal
velocities are approximately geostrophic (see Section 2.4). Such motions,
which are usually referred to as quasi-geostrophic, are simpler to analyze
than are tropical disturbances or planetary-scale disturbances. They are also
the major systems of interest in traditional short-range weather forecasting
and are thus a reasonable starting point for dynamical analysis.

!n this chapter we show that for extratropical synoptic-scale systems the
twin requirements of hydrostatic and geostrophic balance constrain the
baroclinic motions so that to a good approximation the structure and
evolution of the three-dimensional velocity field are determined by the
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142 6 SYNOPTIC-SCALE MOTIONS |
distribution of geopotential height on isobaric surfaces. The equations that
express these relationships constitute the quasi-geostrophic system. Before
developing this system of equations it is useful to summarize briefly the
observed structure of midlatitude synoptic systems and the mean circulations
in which they are embedded. We then develop the quasi-geostrophic momen-
tum and thermodynamic energy equations and show how these can be
manipulated to form the quasi-geostrophic potential vorticity equation and
the omega equation. The former equation provides a method for predicting
the evolution of the geopotential field, given its initial three-dimensional
distribution; the latter provides a method for diagnosing the vertical motion
from the known distribution of geopotential. In both cases alternative
versions of the equations are discussed to help elucidate the dynamical
processes responsible for the development and evolution of synoptic-scale
systems.

6.1 The Observed Structure of Extratropical Circulations

Atmospheric circulation systems depicted on a synoptic chart rarely
resemble the simple circular vortices discussed in Chapter 3. Rather, they
are generally highly asymmetric in form with the strongest winds and largest
temperature gradients concentrated along narrow bands called fronts. Also,
such systems generally are highly baroclinic; the amplitudes and phases of
the geopotential and velocity perturbations both change substantially with
height. Part of this complexity is due to the fact that these synoptic systems
are not superposed on a uniform mean flow but are embedded in a slowly
varying planetary-scale flow that is itself highly baroclinic. Furthermore,
this planetary-scale flow is influenced by orography (that is, by large-scale
terrain variations) and continent-ocean heating contrasts, so that it is highly
longitude dependent. Therefore, it is not accurate to view synoptic systems
as disturbances superposed on a zonal flow that varies only with latitude
and height. As is shown in Chapter 8, however, such a point of view can
be useful as a first approximation in theoretical analyses of synoptic-scale
wave disturbances.

Zonally averaged cross sections do provide some useful information on
the gross structure of the planetary-scale circulation, in which synoptic-scale
eddies are embedded. Figure 6.1 shows meridional cross sections of the
longitudinally averaged zonal wind and temperature for the solstice seasons
of (a) December, January, February (DJF) and (b) June, July, August (JJA).
These sections extend from approximately sea level (1000 mb) to about
16 km altitude (100 mb). Thus the entire troposphere is shown while the
lower stratosphere is shown only for the extratropical regions. In the present

6.1 OBSERVED STRUCTURE OF EXTRATROPICAL CIRCULATIONS 143

Fig. 6.1 Meridional cross sections of longitudinally averaged zonal wind (top panels, ms™')
and temperature (bottom panels, contours, K) for (a} DJF and (b) JJA averaged for
years 1980-1987. (Adapted from Schubert ef al., 1990.) ( Figure continues.)

chapter we are concerned with the structure of the wind and temperature
fields in the troposphere. The stratosphere will be discussed in Chapter 12.

The average pole-to-equator temperature gradient in the Northern Hemi-
sphere troposphere is much larger in winter than in summer. In the Southern
Hemisphere the difference between summer and winter temperature distri-
butions is smaller, owing mainly to the large thermal inertia of the oceans
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Fig. 6.1 (Continued)

together with the greater fraction of the surface that is covered by oceans
in the Southern Hemisphere. Since the mean zonal wind and temperature
fields satisfy the thermal wind relationship (3.30) to a high degree of
accuracy, the maximum zonal wind speed in the Northern Hemisphere is
much larger in the winter than in the summer, while there is a smaller
seasonal difference in the Southern Hemisphere. Furthermore, in both
seasons the core of maximum zonal wind speed (called the mean jet stream
axis) is located just below the tropopause (the boundary between the tropo-
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sphere and stratosphere) at the latitude where the thermal wind integrated
through the troposphere is 4 maximum. In both hemispheres this is about
30°-35° during winter, but it moves poleward to 40°-45° during summer.

That the zonally averaged meridional cross sections of Fig. 6.1 are not
representative of the mean wind structure at all longitudes can be seen in
Fig. 6.2, which shows the distribution of the time-averaged zonal wind
component for DJF on the 200-mb surface. It is clear from this figure that
at some longitudes there are very large deviations of the time-mean zonal
flow from its longitudinally averaged distribution. In particular, there are
strong zonal wind maxima (jets) near 30°N just east of the Asian and
Northern American continents and distinct minima in the eastern Pacific
and eastern Atlantic. Synoptic-scale disturbances tend to develop preferen-
tially in the regions of maximum time-mean zonal winds associated with
the western Pacific and western Atlantic jets and to propagate downstream
along storm tracks that approximately follow the jet axes.

The large departure of the northern winter climatological jet stream from
zonal symmetry can also be readily inferred from examination of Fig. 6.3,
which shows the mean 500-mb geopotential contours for January in the
Northern Hemisphere. Even after averaging the height field for a month,
very striking departures from zonal symmetry remain. These are clearly
linked to the distributions of continents and oceans. The most prominent
asymmetries are the troughs to the east of the American and Asian con-
tinents. Referring back to Fig. 6.2, we see that the intense jet at 35°N and
140°E is a result of the semipermanent trough in that region. Thus, it is
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Fig. 6.2 Latitude-longitude cross section of time-averaged zonal wind speed at 200 mb for
DJF averaged for years 1980-1987. (After Schubert er al., 1990.)
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Fig. 6.3 Mean 500-mb contours in January, Northern Hemisphere. Heights shown in tens of
meters. (After Palmén and Newton, 1969.)

Helght (km)
Pressure (mb)

apparent that the mean flow in which synoptic systems are embedded should
really be regarded as a longitude-dependent time-averaged flow.

In addition to its longitudinal dependence, the planetary-scale flow also
varies from day to day owing to its interactions with transient synoptic-scale .
disturbances. In fact, observations show that the transient planetary-scale *
flow amplitude is comparable to that of the time mean. As a result, monthly
mean charts tend to smooth out the actual structure of the instantaneous b |
Jet stream since the position and intensity of the jet vary. Thus, at any time |
the planetary-scale flow in the region of the jet stream has much greater
baroclinicity than indicated on time-averaged charts. This point is illustrated = B
schematically in Fig. 6.4, which shows a vertical cross section through an VH Fig. 6.4 (a) Schematic isotherms (thin solid lines, °C) and isotachs (dashed lines, ms™') in
observed jet stream over North America. Panel (a) shows the wind and a vertical cross s‘ection lhrou.gh a cold front. Hez}vy lines mark tht? tropopau.se and
temperature cross section, while panel (b) shows the wind and potential | 5 frontal boundaries. The section extends approximately 1200 km in the horizontal

. .. h N L direction. (b) Same as panel (a), but thin solid lines are potential temperature isolines
temperature. The latter provides vivid evidence of the strong static stability in kelvins (after Wallace and Hobbs, 1977.)
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in the stratosphere. It also illustrates the fact that isentropes (constant-g
surfaces) cross the tropopause in the vicinity of the jet so that adiabatic
motions can exchange tropospheric and stratospheric air in that region.

At any instant the axis of the jet stream tends to be located above a
narrow sloping zone of strong temperature gradients called the polar-frontal
zone. This is the zone that in general separates the cold air of polar origin
from warm tropical air. The occurrence of an intense jet core above this
zone of large-magnitude temperature gradients is, of course, not mere
coincidence but rather a consequence of the thermal wind balance.

It is a common observation in fluid dynamics that jets in which strong
velocity shears occur may be unstable with respect to small perturbations,
By this is meant that any small disturbance introduced into the jet will tend
to amplify, drawing energy from the jet as it grows. Most synoptic-scale
systems in midlatitudes appear to develop as the result of an instability of
the jet stream flow. This instability, called baroclinic instability, depends on
the meridional temperature gradient, particularly at the surface. Hence,
through the thermal wind relationship, baroclinic instability depends on
vertical shear and tends to occur in the region of the polar frontal zone.

Baroclinic instability is not, however, identical to frontal instability
because most baroclinic instability models describe only geostrophically
scaled motions, while disturbances in the vicinity of strong frontal zones
must be highly nongeostrophic. As we shall see in Chapter 9, baroclinic
disturbances may themselves act to intensify preexisting temperature
gradients and hence generate frontal zones.

The stages in the development of a typical baroclinic cyclones that
develops as a result of baroclinic instability are shown schematically in Fig.
6.5. In the stage of rapid development there is a cooperative interaction

Fig. 6.5 Schematic 500-mb contours (heavy solid lines), 1000-mb contours (thin lines), and
1000-500-mb thickness (dashed) for a developing baroclinic wave at three stages of
development. (After Palmén and Newton, 1969.)
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Fig. 6.6 West-east cross section through develaping baroclinic wave. Solid lines are trough
and ridge axes; dashed lines are axes of temperature extrema; the chain of open
circles denotes the tropopause.

between the upper level and surface flows; strong cold advection is seen to
occur west of the trough at the surface, with weaker warm advection to the
east. This pattern of thermal advection is a direct consequence of the fact
that the trough at 500 mb lags (lies to the west of) the surface trough so
that the mean geostrophic wind in the 1000-500-mb layer is directed across
the 1000-500-mb thickness lines toward larger thickness west of the surface
trough and toward smaller thickness east of the surface trough. This depen-
dence of the phase of the disturbance on height is better illustrated by Fig.
6.6, which shows a schematic downstream (or west-east) cross section
through an idealized developing baroclinic system. Throughout the tropo-
sphere the trough and ridge axes tilt westward (or upstream) with height,’
while the axes of warmest and coldest air are observed to have the opposite
tilt. As we shall see later the westward tilt of the troughs and ridges is
necessary in order that the mean flow give up potential energy to the
developing wave. In the mature stage (not shown in Fig. 6.5) the troughs
at 500 and 1000 mb are nearly in phase. As a consequence, the thermal
advection and energy conversion are quite weak.

i “DG.Z The Quasi-geostrophic Approximation

The main goal of this chapter is to show how the observed structure of
midlatitude synoptic systems can be interpreted in terms of the constraints

'In reality the phase tilts tend to be concentrated below the 700-mb level.
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imposed on synoptic-scale motions by the dynamical equations. Specifically
we show that for motions that are hydrostatic and nearly geostrophic, the
three-dimensional flow field is determined approximately by the isobaric
distribution of geopotential [®(x, y, p, 1)]. For this analysis, it is convenient
to use the isobaric coordinate system both because meteorological measure-
ments are generally referred to constant-pressure surfaces and because the
dynamical equations are somewhat simpler in isobaric coordinates than in
height coordinates. Thus, use of the isobaric coordinate system simplifies
the development of approximate prognostic and diagnostic equations.

6.2.1 ScALE ANALYSIS IN IsoBARIC COORDINATES

The dynamical equations in isobaric coordinates were developed in
Section 3.1 and for reference are repeated here. The horizontal momentum
equation, the hydrostatic equation, the continuity equation, and the thermo-
dynamic energy equation may be expressed as follows:

DV
—+fkxV=-Vd 6.1
ot (6.1)
RT
Q= —a=—— (6.2)
ap p
V- V+a—w=0 (6.3)
op
J ;
<i+v . v) T-Sw=" (6.4)
at <
Here the total derivative in (6.1) is defined by
D d d
—=|—) +(V-V),+0— 6.5
Dt (at),, ( iz wap (65)

where w = Dp/Dt is the individual pressure change, and in (6.4) S,=
—T3aln 6/ap is the static stability parameter [S,~5x10"*K Pa™' in the
midtroposphere].

These equations, although simplified by use of the hydrostatic approxima-
tion and by neglect of some small terms that appear in the complete spherical
coordinate form, still contain several terms that are of secondary significance
for midlatitude synoptic-scale systems. They can be further simplified by
recalling from Section 2.4 that the horizontal flow is nearly geostrophic and
that the magnitude of the ratio of vertical velocity to horizontal velocity is
of order 1077,
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We first separate the horizontal velocity into geostrophic and ageostrophic
parts by letting :

V=V,+V, (6.6)
where the geostrophic wind is defined as
V.=/5'kx Vo (6.7)

and V, is just the difference between the total horizontal wind and the
geostrophic wind. Here we have assumed that the meridional length scale,
L, is small compared to the radius of the earth so that the geostrophic wind
(6.7) may be defined using a constant reference latitude value of the Coriolis
parameter.’

For the systems of interest |[V,| »|V,|. More precisely,

IVul/IV,| ~ O(Ro)

That is, the ratio of the magnitudes of the ageostrophic and geostrophic
winds is the same order of magnitude as the Rossby number introduced in
Section 2.4.2.

The momentum can then be approximated to O(Ro) by its geostrophic
value, and the rate of change of momentum or temperature following the
horizontal motion can be approximated to the same order by the rate of
change following the geostrophic wind. Thus, in (6.5) V can be .replaced
by V, and the vertical advection, which arises only from the ageostrophic
flow, can be neglected. The rate of change of momentum following the total
motion is then approximately equal to the rate of change of the geostrophic
momentum following the geostrophic wind:

Dv_D.V,
Dt Dt
where
D, 3 3 ] 9
—E=— vV, V=t —+uv,— .
Dt ot ¢ at “gax Ugay (6.8)

% This definition of the geostrophic wind will be referred to as consiant-f (CF) geostrophy,
while the definition given in (3.4) will be called variable-f (VF) geostrophy. The CF geostrophic
wind is nondivergent, while the VF geostrophic wind has a divergent portion (see Problem
3.19). The interpretation of the ageostrophic wind depends strongly on which type of geostrophy
is used, as explained in Blackburn (1985).
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Although a constant f, can be used in defining V,, it is still necessary to
retain the dynamical effect of the variation of the Coriolis parameter with
latitude in the Coriolis force term in the momentum equation. This variation
can be approximated by expanding the latitudinal dependence of f in a
Taylor series about a reference latitude ¢, and retaining only the first two
terms to yield

f=f+By (6.9)

where B=(df/dy),, =20 cos ¢s/a and y=0 at ¢,. This approximation
is usually referred to as the midlatitude beta-plane approximation. For
synoptic-scale motions the ratio of the first two terms in the expansion of
/ has order of magnitude

E£' €os ¢
Jo

This justifies letting the Coriolis parameter have a constant value f; in the
geostrophic approximation and approximating its variation in the Coriolis
force term by (6.9).

From (6.1) the acceleration following the motion is equal to the difference
between the Coriolis force and the pressure gradient force. This difference
depends on the departure of the actual wind from the geostrophic wind.
Thus, it is not permissible simply to replace the horizontal velocity by its
geostrophic value in the Coriolis term. Rather, we use (6.6), (6.7), and (6.9)
to write

L
- —~O0O(Ro)« 1
sin ¢y a

SEXVAVD=(fo+By)kx(V,+V,)—fkxV,
(6.10)
=fokXV,+BykxV,

where we have used the geostrophic relation (6.7) to eliminate the pressure
gradient force and neglected the ageostrophic wind compared to the
geostrophic wind in the term proportional to By. The approximate horizontal
momentum equation thus has the form

DV, _

Dt

—fokx V,—BykxV, (6.11)
Each term in (6.11) is thus O(Ro) compared to the pressure gradient force,

while terms neglected are O(Ro”) or smaller.
The geostrophic wind defined in (6.7) is nondivergent. Thus,

au, 30,

oy

V-V¥=V.V, =
ax
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and the continuity equation (6.3) can be rewritten as
dw
V-V,+—=0 (6.12)
ap

which shows that if the geostrophic wind is defined by (6.7), w is determined
only by the ageostrophic part of the wind field.

In the thermodynamic energy equation (6.4) the horizontal advection can
be approximated by its geostrophic value. However, the vertical advection
is not neglected but forms part of the adiabatic heating and cooling term.
This term must be retained because the static stability is usually large enough
on the synoptic scale that the adiabatic heating or cooling owing to vertical
motion is of the same order as the horizontal temperature advection despite
the smallness of the vertical velocity. It can be somewhat simplified, though,
by dividing the total temperature field, T,,, into a basic state (standard
atmosphere) portion that depends only on pressure, To( p), plus a deviation
from the basic state, T(x, y, p, t), as was done for potential temperature in
Section 2.7.4. Thus we let

Tolx, y,p, 1) = To(p)+ T(x, 3, p, 1)

Now since [dTo/dp| > |3 T/ap| only the basic state portion of the temperature
field need be included in the static stability term and the quasi-geostrophic
thermodynamic energy equation may be expressed in the form

(ow)r-(2
at R
where o=—RT,p ' d In 6,/dp and 6, is the potential temperature corre-
sponding to the basic state temperature T, (c=2x10"°m?>Pa~2s 2 in the
midtroposphere).

Equations (6.2), (6.7), (6.11), (6.12), and (6.13) constitute the quasi-
geostrophic equations. If J is known these form a complete set in the
dependent variables @, T,V,,V,, and w. This form is particularly useful
when information is needed on the distribution of the ageostrophic velocity.
However, when V, is not required it may be eliminated to produce a
somewhat simpler set.

(6.13)

6.2.2 THE QUASI-GEOSTROPHIC VORTICITY EQUATION

Just as the horizontal momentum can be approximated to O(Ro) by its
geostrophic value, the vertical component of vorticity can also be approxi-
f'nated geostrophically. If the CF geostrophic relationship (6.7) is expanded
in Cartesian coordinates as
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oP odb
foog=7se fo==0 (6.14)

the geostrophic vorticity, {,=k - VxV,, can be expressed in terms of the
horizontal Laplacian of the geopotential:

d J 1 2(1) Zq) 1_,
;gz_ﬂs_ﬁ=_(a__+a )——V-q> (6.15)

ax ay fo\ox® ay*) fo

Equation (6.15) can be used to determine {(x, y) from a known field
®(x, y). Alternatively, (6.15) can be solved by inverting the Laplacian
operator to determine ® from a known distribution of ¢, provided that
suitable conditions on @ are specified on the boundaries of the region in
question. This invertibility is one reason why vorticity is such a useful
forecast diagnostic; if the evolution of the vorticity can be predicted, then
inversion of (6.15) yields the evolution of the geopotential field, from which
it is possible to determine the geostrophic wind. Since the Laplacian of a
function tends to be a maximum where the function itself is 2 minimum,
positive vorticity implies low values of geopotential and vice versa, as
illustrated for a simple sinusoidal disturbance in Fig. 6.7.
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Fig. 6.7 Schematic 500-mb geopotential field showing regions of positive and negative
advections of relative and planetary vorticity.
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The quasi-geostrophic vorticity equation can be obtained from the x and

y components of the quasi-geostrophic momentum equation (6.11), which
can be expressed respectively as

D.u

gf—ﬁvu—ﬁyvfo (6.16)
and
D,v,
Dgtl’+f0uu+,3yug=0 (6.17)

Taking 8(6.17)/9x —3(6.16)/3y and using the fact that the divergence of the
CF geostrophic wind vanishes immediately yields the vorticity equation

(6.18)

which should be compared with (4.22).

Noting that since f depends only on y so that D,f/Dt=V,-Vf=Bo,
and that the divergence of the ageostrophic wind can be eliminated in favor
of w using (6.12), we can rewrite (6.18) as

9

o (6.19)

=—vg-V(;g+f)+ﬁ,j—;’

which states that the local rate of change of geostrophic vorticity is given
by the sum of the advection of the absolute vorticity by the geostrophic
wind plus the concentration or dilution of vorticity by stretching or shrinking
of fluid columns (the divergence effect).

The vorticity tendency owing to vorticity advection [the first term on the
right in (6.19)] may be rewritten as

=V, V({+f)=-V,-V{,—Bo,

The two terms on the right represent the geostrophic advections of
relative vorticity and planetary vorticity, respectively. For disturbances in
the westerlies, these two effects tend to have opposite signs as illustrated
schematically in Fig. 6.7 for an idealized 500-mb flow.
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In region | upstream of the 500-mb trough, the geostrophic wind is
directed from the negative vorticity maximum atthe ridge toward the positive
vorticity maximum at the trough so that ~V, - V{,<0. But at the same time,
since v, <0 in region I, the geostrophic wind has its ¥ component directed
down the gradient of planetary vorticity so that —Bv,>0. Hence, in region
I the advection of relative vorticity tends to decrease the local vorticity,
whereas advection of planetary vorticity tends to increase the local vorticity,
Similar arguments (but with reversed signs) apply to region I1. Therefore,
advection of relative vorticity tends to move the vorticity pattern and hence
the troughs and ridges eastward (downstream). But advection of planetary
vorticity tends to move the troughs and ridges westward against the advecting
wind field. The latter motion is called retrograde motion or retrogression,

The net effect of advection on the evolution of the vorticity pattern
depends upon which type of vorticity advection dominates. In order to
compare the magnitudes of the relative and Planetary vorticity advections,
we assume that @ on the midlatitude g Plane can be represented as the
sum of a time and zonally averaged part, which depends on y and p, and
a fluctuating part that has a sinusoidal dependence in x, and »

O(x, y, p, ) =B(y, p)+ d'( p, 1) sin kx cos Iy

where @' is the amplitude of the fluctuating component and the wave numbers
k and I are defined as k=2%/L, and |= 27/L, with L, and L, the
wavelengths in the x and y directions, respectively. We further assume that

P(y, p) = Do(p) —f, Uy

where @, is a standard atmosphere geopotential distribution and U is a
constant mean zonal wind. The geostrophic vorticity is then simply

{e=10"' V&= —f (K + P)d sin jx cos ly

~ (6.20)
=~f '(K+ P)(d - D)

The patterns of geopotential and relative vortj
in Fig. 6.8. For a disturbance with a given amplitude of geopotential
disturbance, ®’, the amplitude of the Vorticity increases as the square of
the wave number or inversely as the Square of the horizontal scale. As a
consequence, the advection of relative
vorticity advection for short waves (L,

city for this case are shown

vorticity dominates over planetary
<3000 km), while for long waves
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Fig. 68 Geopotential in units of 10% 2 ¢~

nHatt t 7% (a) and relative vorticity in units of 10765~ (b)
for the sinusoidal disturbance of Eq. (6.20). Here ®,=5x10* m?s~2, fo=10"%s7",

. 2.-2 o, _ .
_8300"' $5U=10ms™" and k=1=(7/2)x 10 m™". Axes are labeled in units
of 10° km.

(Lx>10,000 km) the planetary vorticity advection tends to dominate. There-

fore, as a general rule ShOrt-wavelength synoptic-scale systems should move
g zonal flow while long planetary waves should
Wwestward against the mean flow).> Waves of
ay be Quasi-stationary or move eastward much
strophic wind speed. Since positive maxima in
ated with cyclonic disturbances, regions of posi-
which can easily be estimated from upper-level

intermediate wavelength m
slower than the mean geo
relative vorticity are assocj
tive vorticity advection,

3 N .
= bObserveld Ic;ng waves tend to remain stationary rather than to retrogress. This is believed
€ a result of processes such ag nonlinear interactions with transient short waves, forcing

oWing to topographic lr.1ﬂuences, and diabatic heating contrasts associated with land-sea
differences, as was mentioned in Section 6.1
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maps, are commonly used as aids in forecasting synoptic-scale weather
disturbances.

Vorticity advection does not alone determine the evolution of meteorologi.
cal systems. A change in the vertical shear of the horizontal wind associated
with differential (i.e., height-dependent) vorticity advection will drive ag
ageostrophic vertical circulation, which adiabatically adjusts the horizonta]
temperature gradient to maintain thermal wind balance. The convergence
and divergence fields associated with this vertical circulation will not only
modify the effects of vorticity advection at upper levels but also force
changes in the vorticity distribution in the lower troposphere, where advec.
tion may be very weak.

In an analogous manner, thermal advection, which is often strong near
the surface, does not merely force changes in the temperature in the lower
troposphere. Rather, it induces a vertical circulation, which through its
associated divergence and convergence patterns alters the vorticity fields
both near the surface and aloft so that thermal wind balance is maintained,

The vertical circulation induced by quasi-geostrophic differential vorticity
advection and thermal advection is generally an order of magnitude larger
than that induced by boundary layer pumping (5.38). Thus, it is reasonable
to neglect boundary layer effects to a first approximation in quasi-geo-
strophic theory.

6.3 Quasi-geostrophic Prediction

The characteristics of the geostrophic circulation forced by the vertical
motions associated with vorticity and thermal advection can be determined
without explicitly determining the distribution of w. Since T, {.,and V,  are
all functions of ®, the quasi-geostrophic vorticity equation (6.19) and the
thermodynamic energy equation (6.13) each can be written so that they
contain only the two dependent variables ® and w. (For simplicity we ignore
the diabatic heating term in the thermodynamic energy equation even though
it may be important in some synoptic disturbances.) It is thus possible to
eliminate & between these two equations and obtain an equation relating
® to 9®/a1. Defining the geopotential tendency y = a®/at, using the hydro-
static equation (6.2) to eliminate T in favor of 3®/dp, and recalling that
the order of partial differentiation may be reversed without changing the
result, the thermodynamic energy equation (6.13) and the geostrophic
vorticity equation (6.19) can be expressed respectively as

a o
—X=—Vg . V(—-—-) —ow
ap ap

(621) =

it
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and

2 1 ] 76
V‘X=—ﬁ,Vg-V(7V"<I>+f) +f5£ (6.22)
0

where o was defined below (6.13) and we have used (6.15) to write the
geostrophic vorticity and its tendency in terms of the Laplacian of
geopotential.

Equations (6.21) and (6.22) are one form of the quasi-geostrophic system.
The first of these indicates that the vertical derivative of the geopotential
tendency is equal to the sum of thickness advection and adiabatic thickness
change owing to vertical motion. The second indicates that the horizontal
‘Laplacian of the geopotential tendency is equal to the sum of vorticity
advection plus vorticity generation by the divergence effect. Purely geo-
strophic motion (@ =0) is a solution to (6.21)-(6.22) only in very special
situations such as barotropic flow (no pressure dependence) or zonally
symmetric flow (no x dependence). More general purely geostrophic flows
cannot satisfy both these equations simultaneously, since there are then two
independent equations in a single unknown, so that the system is overdeter-
mined. Thus, it should be clear that the role of the vertical motion distribu-
tion must be to maintain consistency between the geopotential tendencies
required by thermal advection in (6.21) and vorticity advection in (6.22),
respectively.

6.3.1 GEOPOTENTIAL TENDENCY 3

If we multiply (6.21) by f2/o and then differentiate with respect to
pressure and add the result to (6.22), o is eliminated and we obtain an
equation that determines the local rate of change of geopotential in terms
of the three-dimensional distribution of the ® field:

2
o5 G (i)
—_—— S—

-’

——

A B

o[ Ly, p(-20)]
kc'>‘p T ap

>

(6.23)

—

C

This equation is often referred to as the geopotential tendency equation.
It provides a relationship between the local change of geopotential and the
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distributions of vorticity and thickness advection as can be seen by ana]yzing '

the three terms labeled A, B, and C, respectively. If the distribution of ¢
is known at a given time, terms B and C may be regarded as known forcing
functions, and (6.23) is a linear partial differential equation in the unknowy

X

its implications can be gained by examining the solution for a simple waye
pattern. Term A in (6.23) involves only second derivatives in space of the §
x field. We showed in (6.20) that for wavelike disturbances the horizontaj f
Laplacian of @ is proportional to the negative of the deviation of ® from

its mean. A similar relationship holds for y. Thus, letting

x(x, v, p,1)=X(p, t) sin kx cos ly

we have Vy=—(k>+I*)x. The forcing terms B and C in (6.23) are also E:

assumed to have sinusoidal behavior in x and y:

—foVg+ V(%Vztb-f-f) = F,(p) sin kx cos Iy
0

o ob
-y -V(—-a—> = F( p) sin kx cos ly
P

where F,(p) and Fy(p) represent the vertical dependences of the vorticity
these
expressions into (6.23) and eliminating the sin kx cos Iy dependence, which i}
is common to each term, we obtain an ordinary differential equation for = §

advection and thermal advection, respectively. Substituting

the vertical dependence of the geopotential tendency:

where A>= (k*+ I*)af,* and we have neglected the pressure dependence of

static stability.* Equation (6.24) shows that forcing at a given altitude will

* Actually, o varies substantially with pressure even in the troposphere. However, the
qualitative discussion in this section would not be changed if we were to include this additional
complication.
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(6.24) |

s
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generate a response whose vertical scale (measured in pressure units) is
A~'. Thus, for example, upper-level vorticity advection associated with
disturbances of large horizontal scale (small k and /) will produce geo-

tential tendencies that extend down to the surface with little loss of
amplitude, while for disturbances of small horizontal scale the response is
confined close to the levels of forcing (see Fig. 6.9). In mathematical terms,
the differential operator in (6.24) spreads the response in the vertical so
that forcing at one altitude influences other altitudes.

The role of thermal advection in changing upper-level geopotential heights
can be simply illustrated by considering the special case of B =0 and very
large horizontal scale so that A*->0 and F,=0. Eq. (6.24) can then be
approximated as

d*X /dp®~—af5*(dFy/ dp)

Using the definitions of X and F; and integrating twice with respect to
pressure yields

X(p>—X(po)z—%I Frdp
f() Po

(mb)

Fig. 6.9 Vertical structure of the geopoten-
tial tendency (units of 1072 m?s™3) 250 -
owing to forcing by vorticity advec-
tion. Here, =0, k=2n/L,, F,=
2x1072 k%573, for p <500 mb and
F,=0 for p>500mb, A?=200k*

Pa?m %  and L =2,000km =00 =
(dashed line), L, =4,000km (dot-
ted line), and L, =8,000 km (solid
line).
750 —
1000
0 1 2
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After multiplying both sides by sin kx cos ly and using the definitions of X
and Fp, this may be rewritten as

ad Pa

P

which states that the thickness tendency for the column between pressure
levels p, and p is proportional to the vertically integrated temperature
advection.

Term B in (6.23), the vorticity advection term, generally is the main
forcing term in the upper troposphere. As the discussion in the previous
subsection indicated, for short waves term B is negative in region I (upstream
of the 500-mb trough.) Thus, since the sign of the geopotential tendency is
opposite to that of the forcing in this case, x will be positive and a ridge
will tend to develop. This ridging is, of course, necessary for the development
of a negative geostrophic vorticity. Similar arguments, but with the signs
reversed, apply to region Il downstream from the 500-mb trough, where
falling geopotential heights are associated with a positive relative vorticity
advection. It is also important to note that the vorticity advection term is
zero along both the trough and ridge axes since both V{, and v, are zero
at the axes. Thus, vorticity advection cannot change the strength of this
type of disturbance at the levels where the advection is occurring but only
acts to propagate the disturbance horizontally and spread it vertically.

The major mechanism for amplification or decay of midlatitude synoptic
systems is contained in term C of (6.23). This term involves the rate of
change with pressure of the horizontal thickness advection. (If we had
retained the diabatic heating term it would have contributed in a similar
fashion.) The thickness advection tends to be largest in magnitude in the
lower troposphere beneath the 500-mb trough and ridge lines in a developing
baroclinic wave. Now since —3®/ap is proportional to temperature, the
thickness advection is proportional to the temperature advection. Thus,
term C in (6.23) is proportional to minus the rate of change of temperature
advection with respect to pressure (i.e., plus the rate of change with respect
to height). This term is sometimes referred to as the differential temperature
advection.

To examine the influence of differential temperature advection on the
geopotential tendency we consider the idealized developing wave shown in

Fig. 6.5. Below the 500-mb ridge there is strong warm advection associated

with the warm front, while below the 500-mb trough there is strong cold
advection associated with the cold front. Above the 500-mb level the tem-
perature gradient is usually weaker, and the isotherms often become neatly
parallel to the height lines, so that thermal advection tends to be small.
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Thus, in contrast to term B in (6.23), the forcing term C is concentrated in
the.lower troposphere. But again, the geopotential tendency response is not
limited 'to the levels of forcing but is spread in the vertical, so that for
developing waves it will deepen upper-level troughs and build upper-level
ridges.

In the region of warm advection —V, - V(—ad/ap)>0 since V, has a
component down the temperature gradient. But, as explained abgve the
warm advection decreases with height (increases with pressure) so’that
a[—Vg-- V(—8®/ap)]/ap > 0. Conversely, beneath the 500-mb trough where
there is cold advection decreasing with height, the opposite signs obtain
Theref'ore,.along the 500-mb trough and ridge axes where the vorticit);
advection is zero the tendency equation states that for a developing wave

X“‘{i [—Vg-V(—a—d-))] >0 at the ridge
ap ap/ 1 <0 at the trough
Therefore, as indicated in Fig. 6.10, the effect of cold advection below the

500-mb trough is to d‘eepen the trough in the upper troposphere, and the
effect of warm advection below the 500-mb ridge is to build the ridge in

250

500

750

1000

F‘ 3 - - 3
ig. 6.10 Ea.st—west section through a developing synoptic disturbance showing the relation-
ship of temperature advection to the upper-level height tendencies. A and B

designate, respectively, regions of cold advection and warm advection in the lower
troposphere.
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the upper troposphere. Hence, differential temperature or thickness advec.
tion, even if limited to the lower troposphere, intensifies the upper-leve]
troughs and ridges in a developing system.

Qualitatively, the effects of differential temperature advection are easily
understood since the advection of cold air into the air column below the
500-mb trough reduces the thickness of that column and hence lowers the
height of the 500-mb surface unless there is a compensating rise in
the surface pressure. Obviously, warm advection into the air column below
the ridge has the opposite effect.

In summary, we have shown that in the absence of diabatic heating the
horizontal temperature advection must be nonzero in order that a mid-
latitude synoptic system intensify through baroclinic processes. As we shall
see in Chapter 8, the temperature advection pattern described above
indirectly implies conversion of potential energy to kinetic energy.

6.3.2 THE QUASI-GEOSTROPHIC POTENTIAL VORTICITY EQUATION

The geopotential tendency equation stated in the form (6.23) is useful
for physical motivation of processes leading to geopotential changes (and
hence upper-level troughing and ridging) since the tendency y is related to
the easily comprehended processes of vorticity and temperature advection.
However, this form of the equation actually conceals its true character as
a conservation equation for a field commonly referred to as quasi-geostrophic
potential vorticity. To put (6.23) in conservation form, we again neglect the
diabatic heating term and simplify the right-hand side by using the chain
rule of differentiation to write term C as

5 ob ; 0]
(v B2y Lok g20)
ap \o ap o dp ap

But f, 3V,/op =kx V(3®/ap), which is perpendicular to V(a®/op). Thus,
the second part of the above expression vanishes and the first part can be
combined with term B in (6.23) to yield

d 1_, a od D
<—+Vg-v) [—V-<I>+f+—(é —)] =—2=0 (6.25)
at ) ap \o dp Dt
where g is the quasi-geostrophic potential vorticity defined by
1,
0 op \o dp

SR S

£ L S
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The three parts of (6.26), reading from left to right, are the relative
vorticity, the planetary vorticity, and the stretching vorticity. As a parcel
moves about in the atmosphere, the relative vorticity, planetary vorticity,
and stretching vorticity terms may each change. But according to (6.25)
their sum is conserved following the geostrophic motion. The scalar g,
commonly called the quasi-geostrophic potential vorticity, is proportional
to a linearized form of the Ertel potential vorticity discussed in Section 4.3.
However, unlike Ertel’s potential vorticity, g has units of vorticity and is
determined solely by the isobaric geopotential distribution. Note that
whereas Ertel’s potential vorticity is conserved following the total motion
on an isentropic surface, g is conserved following the geostrophic motion
on an isobaric surface. For this reason some authors prefer the term pseudo-
potential vorticity. However, we will generally refer to g as the quasi-
geostrophic potential vorticity.

The stretching vorticity portion of g can be interpreted by substituting
from the hydrostatic equation (6.2) to give

d {fo od (T o (T fo oT

S5 n (3) 3 D)2

op \o dp ap \op ap \S, S, ap
where we have used the fact that S, [as defined below (6.5)] varies only
slowly with height in the troposphere. Referring back to Fig. 4.7, it is clear
that as an air column moves adiabatically from left to right in the figure it
is stretched vertically through upward motion in the upper portion and
downward motion in the lower portion of the column. Thus, the upper
portion must cool and the lower portion warm adiabatically so that aT/ap
must increase, and the stretching vorticity term becomes increasingly nega-
tive. If the planetary vorticity changes are small, the relative vorticity must
then become increasingly positive in order that g remain constant following
the geostrophic motion.

Comparing (6.23) and (6.25), we see that term A in (6.23) is actually just
the tendency of g. Thus, the tendency of quasi-geostrophic potential vorticity
is proportional to minus the geopotential tendency. A local increase
(decrease) in q is associated with trough (ridge) development. Since q is a
conserved quantity following the geostrophic motion we can diagnose the
tendency purely from the geostrophic advection of g. Furthermore, (6.25)
shows that the tendency will be zero (i.e., the flow will be steady) provided
that the geostrophic wind is everywhere parallel to lines of constant g. Given
the distribution of ®, (6.25) can be integrated in time to provide a forecast
of the evolution of the @ field. However, because V, depends on the

“distribution of ®, the equation is highly nonlinear and numerical methods

must be used for obtaining solutions.
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6.4 Diagnosis of Vertical Motion

Since {, and V, are both defined in terms of ®(x, y, p, t), (6.19) can be
used to diagnose the w field provided that the fields of both ® and a®/a¢
are known. The former is a primary product of operational weather analysis,
However, since upper-level analyses are generally available only twice per
day, the latter can only be crudely approximated from observations by
taking differences over 12 hours. Despite this limitation, the vorticity
equation method of estimating w is usually more accurate than the continuity
equation method discussed in Section 3.5.1. However, neither of these
methods of estimating w uses the information available in the thermo-
dynamic energy equation. An alternative method of estimating the vertical
motion that utilizes both the vorticity equation and the thermodynamic
equation is developed in this section.

6.4.1

If we eliminate y instead of w between equations (6.21) and (6.22) we
obtain a diagnostic equation that relates the field of w at any instant to the
® field at the same time. This equation is called the vertical motion or
omega equation. Unlike the vorticity equation or thermodynamic energy
equation methods discussed earlier, the omega equation method of diagnos-
ing the vertical velocity requires information on the geopotential distribution
at only a single time. Furthermore, since the omega equation arises from a
combination of the vorticity and thermodynamic equations, the values of
o determined are consistent with both equations.

To obtain the omega equation we take the horizontal Laplacian of (6.21)

OMEGA EqQuaTioN

to yield
vy [vg . v(&)] -0 Ve (6.27)
ap ap
We next differentiate (6.22) with respect to pressure, yielding
3 3 1 Fw
—(Vx)=—fo—| Vg V| - VO + >]+ 5 6.28

Since the order of the operators on the left-hand side in (6.27) and (6.28)
may be reversed, the result of subtracting (6.27) from (6.28) is to eliminate
X. After some rearrangement of terms, we obtain the omega equation
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. fo 3
(V'+&—2)w=&—[ eV lV2c1>+f)]
o ap oap o S "/
A B
1 i
erlen(2)]
o ap (6.29)

—— )

C

Equation (6.29) involves only derivatives in space. It is, therefore, a
diagnostic equation for the field of w in terms of the instantaneous ® field.
The omega equation, unlike the continuity equation, provides a method of
estimating o that does not depend on observations of the ageostrophic
wind. In fact, direct wind observations are not required at all, nor does the
omega equation require information on the vorticity tendency, as required
in the vorticity equation method, or on the temperature tendency, as required
in the adiabatic method discussed in Section 3.5.2. Only observations of @
at a single time are needed to determine the o field using (6.29). The terms
in (6.29), however, employ higher-order derivatives than are involved in

"the other methods of estimating w. Accurately estimating such terms from
noisy observational data can be quite difficult.

The terms in (6.29) can be physically interpreted in a manner analogous
to the corresponding terms in the tendency equation. The differential
operator in A is very similar to the operator in term A of the tendency
equation (6.23). Thus, term A acts to spread the response to a localized
forcing. Because the forcing in (6.29) tends to be a maximum in the
midtroposphere and o is required to vanish at the upper and lower boun-
daries, for qualitative discussion it is permissible to assume that » has
sinusoidal behavior not only in the horizontal but also in the vertical:

w = Wy sin(#wp/p,) sin kx sin ly

()]

— w

Po

.Which shows that term A in (6.29) is proportional to —w. Recalling that o
15 proportional to —w so that w <0 implies upward vertical motion, we see
that term A is proportional to the vertical velocity. Thus, there will be
U&Ward (downward) motion where the sum of terms B and C is positive

({legative). The physical significance of each of these forcing terms is
discussed in turn below.

we can then write

2 62
(V/2+’l 2)mz—[k2+12+l
o adp o
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Term B is called the differential vorticity advection. Clearly this term ig
proportional to the rate of increase with height of the advection of absolute
vorticity. To understand the role of differential vorticity advection we agaip
consider an idealized developing baroclinic system. Figure 6.11 indicates
schematically the geopotential contours at 500 and 1000 mb for such a
system. At the centers of the surface high and surface low, designated H
and L, respectively, the vorticity advection at 1000 mb must be very small,
However, at 500 mb the positive relative vorticity advection is a maximum
above the surface low, while negative relative vorticity advection is strongest
above the surface high. Thus, for a short-wave system where relative vorticity
advection is larger than the planetary vorticity advection the pattern of
vertical motion owing to the influence of term B alone is

0 <0 above point H
rocd = [V, - V(£ + )
" {az[ e V(&tS)] >0 above point L

Thus, differential vorticity advection is associated with rising motion above
the surface low and subsidence above the surface high. This paitern of
vertical motion is in fact just what is required to produce the thickness
tendencies in the 500-1000-mb layer above the surface highs and lows. For
example, above the surface low there is positive vorticity associated with
negative geopotential deviations since vorticity is proportional to the
Laplacian of geopotential. Increasing vorticity thus implies a falling geo-
potential (y <0). Hence the 500-1000-mb thickness is decreasing in that
region. Since horizontal temperature advection is small above the center of
the surface low, the only way to cool the atmosphere as required by the
thickness tendency is by adiabatic cooling through the vertical motion field.
Thus, the vertical motion maintains a hydrostatic temperature field (that is,
a field in which temperature and thickness are proportional) in the presence
of differential vorticity advection. Without this compensating vertical motion

E

Fig. 6.11 Schematic 500-mb contours (solid lines) and 1000-mb contours (dashed lines)
indicating regions of strong vertical motion owing to differential vorticity advection.

A
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either the vorticity changes at 500 mb could not remain geostrophic or the
temperature changes in the 500-1000-mb layer could not remain hydrostatic.

Term C of (6.29), which is merely the negative of the horizontal Laplacian
of the thickness advection, is proportional to the thickness advection. The
vertical velocity forced by term C acting alone is given by

ad
Dl
ap ap

If there is warm (cold) advection, term C will be positive (negative) so
that in the absence of differential vorticity advection w would be positive
(negative). Thus, as indicated in Fig. 6.12, rising motion will occur to the
east of the surface low in the warm front zone and sinking motion will
occur west of the surface low behind the cold front. Physically, this vertical
motion pattern is required to keep the upper-level vorticity field geostrophic
in the presence of the height changes caused by the thermal advection. For
example, warm advection increases the 500-1000-mb thickness in the region
of the 500-mb ridge. Thus, the geopotential height rises at the ridge and
the anticyclonic vorticity must increase if geostrophic balance is to be
maintained. Since vorticity advection cannot produce additional anticy-
clonic vorticity at the ridge, horizontal divergence is required to account
for the negative vorticity tendency. Continuity of mass then requires that
there be upward motion to replace the diverging air at the upper levels. By
analogous arguments it can be shown that subsidence is required in the
cold advection region beneath the 500-mb trough. ’

To summarize, we have shown as a result of scaling arguments that for
synoptic-scale motions where vorticity is constrained to be geostrophic and

wocvz[vg-v<—

w E

Figh&.12 Schematic 500-mb contours (thin solid lines), 1000-mb contours (dashed lines),
and surface fronts (heavy lines) indicating regions of strong vertical motion owing
to temperature advection.
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tempergture is constrained to be hydrostatic, the vertical motion field is
de.termn}ed uniquely by the geopotential field. Further, we have shown that
this _vc.artlca'l motion field is just what is required to ensure that changes in
vorticity will b.e geostrophic and changes in temperature will be hydrostatic,
These constraints, whosge importance can hardly be overemphasized, will
be elaborated in the next subsection.

ey

6.42 THE Q VEecTor

Altbough tenTls B and C in the omega equation (6.29) apparently have
clea?r _u.]terpretatlons as separate physical processes, in practice there is often
a slg.mﬁcant amount of cancellation between them. They also are not
mva‘rlant under a Galilean transformation of the zonal coordinate. That is
adding a constar}t mean zonal velocity will change the magnitude of eacl;
of these terms without changing the net forcing of the vertical motion. For
these reasons an alternative form of the omega equation, the Q-vector form
!1as been develop.ed in which the forcing of the vertical motion is expressed’
in terms of the divergence of a horizontal vector forcing field.

.In ordt?r to keep the mathematical development as simple as possible we
will (.:onsu?er th§ Q-vector formulation of the omega equation only for the
case in wl.nch B is neglected. This is usually referred to as an f plane because
it is equxva.lent to approximating the geometry by a Cartesian planar
geometry with constant rotation.

On the f plane the quasi-geostrophic prediction equations may be
expressed simply as follows:

D, u
I;f—fovﬁo (6.30)
D,v,
5,*+ﬂ)ua =0 (6.31)
D,T
—LD, = Sw=0 (6.32)
These are coupled by the thermal wind relationship
du_RaT s, RoT G330 L
p  fyay’ pap_ fo ox (6.33a,b)
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We now eliminate the time derivatives between (6.30) and (6.32) by first
taking

d R 9
—(6.30) —— —(6.32)
pal’ ( Jo oy

to obtain

d | du ou du,
[0, 2802 ]
ax ay

T T, aT
= ) Ri[-a—+ g +ug——S,,w:|=0
ap L at ay

_= u s
foaylar “Boax
Using the chain rule of differentiation, this may be rewritten as

RS, dw v, (a+ 3 . a)( du, RaT)
- - =—|—+u,—+v,— ——
fo ay 7P%p ar “eax ay)\Pap foay

_p[%%+%%]+§[%ﬂ+ﬂ§_7]
dp dx dp dy ] folLay ax dy ay

But, by the thermal wind relation (6.33) the term in parenthesis on the
right-hand side vanishes and

_,,[% 3y | 90, 8_] __R [B_T%_a_f‘i‘is]
op dx dp a8y foldy ax ox ay

Using these facts, plus the fact that
ou,/dx+av,/ay =0

we finally obtain the simplified form

22 2% _ 50, (6.34a)
ay " op
where
\’
QZE_B[G_"&Q"Q_%QI]:_B@_&.W
pLdy ox 9y oy p dy

Sigilarly, if we take

R 9
(631 += 2 (632)
ap 0 0x

o
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followed by application of (6.33b) we obtain

5 dU,

__fo (6.34b)

=-2Q,

where

R oV

9T 0T
Q,E_E[m8_+m1]=___.g vT
pLdx 3x ox dy p ox

If we now take 3(6.34b)/ax +3(6.34a)/ay and use (6.12) to eliminate the
ageostrophic wind, we obtain the Q-vector form of the omega equation:

2

oV +f§‘-3—£u;= -2V-Q (6.35)
ap~
where
oV, R oV
Q= (Ql,O_)—<——— VT,———"-VT) (6.36)
p ox p o9y

Equation (6.35) shows that on the f plane vertical motion is forced only
by the divergence of Q. Unlike the traditional form of the omega equation,
the Q-vector form does not have forcing terms that partly cancel. The forcing
of w can be represented simply by the pattern of the Q vector. By the
arguments of the last subsection the left-hand side in (6.35) is proportional
to the vertical velocity (w). Hence, regions where Q is convergent (divergent)
correspond to ascent (descent).

The Q vector may be interpreted physically by considering the special
case of baroclinic motion that is purely geostrophic so that the vertical
velocity vanishes. Then

at
Thus,
d oT oV
i(—+vg-V>T=(i+Vg V)—+a—E VT=0
ax \dt at dx adx

e
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which implies that

a
<_+vg -V) oT_Qwp
at dx R

By symmetry,

3 T Q,
(_+vg . V) aT_Qwp
at dy R

so that in vector form

D,(R
—E(—VT)= .
—~ (p )-o (637)
Thus, Q is proportional to the rate of change of horizontal temperature
gradient forced by geostrophic motion alone. By similar means it can be

shown that the change in the vertical shear of the geostrophic wind owing
to advection by purely geostrophic flow is given by

Dy (. oug) _ _ Dy (9% _
pe(n58) -0 2(2%)=+,

Comparing (6.38) with the components of (6.37), we see that purely
geostrophic flow will tend to destroy the thermal wind relationship since
the forcing of the vertical shear of the geostrophic wind and the horizontal
temperature gradient are equal in magnitude but have opposite signs. Only
in the presence of ageostrophic winds and their accompanying vertical
motions can the thermal wind balance be maintained.

Although (6.37) provides a useful physical interpretation of the Q vector,
it is not easy to use this expression to estimate the direction and magnitude
of the Q vector at a given point on a weather map. Such an estimate can
be made quite readily, however, by utilizing an alternative expression for
the Q vector. If the'Tnotion is referred to a Cartesian coordinate system in
which the x axis is parallel to the local isotherm with cold air on the left,
then (6.36) can be simplified to give

Q- - R(IT) (22 2m))
p \dy/ \ox ox

(6.38)

+
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Dtis\c;nt
Fig. 6.13 Q vectors (bold arrows) for idealized pattern of isobars (solid) and isotherms

(dashed) for a family of cyclones and anticyclones. (After Sanders and Hoskins,
1990.)

where we have again used the fact that gu o/ 90X = —av,’/ay From the rules
for cross multiplication of unit vectors the above expression for Q can be

rewritten as
R|oT oV
o502
p oy ax

Thus, the Q vector can be obtained by evaluating the vectorial change of
V, along the isotherm (with cold air on the left), rotating the resulting
change vector by 90° clockwise, and multiplying the resulting vector by
l8T/ayl.

The Q vector, and hence the forcing of vertical motion, can be estimated
with the aid of (6.39) from observations of ® and T on a single isobaric
surface. Examples for two simple cases, both of which have temperature
decreasing toward the north, are shown in Figs. 6.13 and 6.14. Figure 6.13

(6.39)

Cold

Descent

Ascent /-—e’t

Warm

Fig. 6.14 Orientation of Q vectors (bold arrows) for confluent (jet entrance) flow. Dashed e b

lines are isotherms. (After Sanders and Hoskins, 1990.)
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shows an idealized pattern of cyclones and anticyclones in a slightly per-
turbed westerly thermal wind. Near the center of the low the geostrophic
wind change moving eastward along the isotherm (i.e., with cold air to the
left) is from northerly to southerly. Thus the geostrophic wind change vector
points northward, and a 90° clockwise rotation produces a Q vector parallel
to the thermal wind. In the highs, by the same reasoning the Q vectors are
antiparallel to the thermal wind. The pattern of V - Q thus yields descent
in the region of cold air advection west of the trough and ascent in the
warm air advection region east of the trough.

In the situation shown in Fig. 6.14 the geostrophic flow is confluent so
that the geostrophic wind increases eastward along the isotherms. In this
case the vectorial change in V, is parallel to the isotherms so that the Q
vectors are normal to the isotherms and are directed up the temperature
gradient. Again, rising motion occurs where the Q vectors are convergent.
Since such rising must imply vorticity stretching in the column below,
cyclonic vorticity will tend to increase below a region of upper level
convergent Q vectors.

643 THE AGEOSTROPHIC CIRCULATION

In the traditional form of quasi-geostrophic theory given in Section 6.3
the ageostrophic velocity component is not explicitly determined. Rather,
its role in the secondary vertical circulation is implicitly included through
diagnostic determination of the w vertical motion field. There are some
dynamical aspects of the ageostrophic motion that are not, however, obvious
from analysis of vertical motion alone. In particular, in some synoptic
situations advection by the ageostrophic wind may be important in the
evolution of the temperature and vorticity fields.

Since the ageostrophic wind generally has both irrotational and nondiver-
gent components, the total ageostrophic flow field cannot be obtained from
knowledge of the divergence alone. Rather, it is necessary to use the
quasi-geostrophic momentum equation (6.11). If for simplicity we neglect
the B effect and solve (6.11) for the ageostrophic wind we obtain

1, DV A ]
\'A fok Dr ﬁ)[kx +kx(V,-V)V (6.40)

which shows that in the Northern Hemisphere the ageostrophic wind vector
is directed to the left of the geostrophic acceleration following the geo-
strophic motion.

The forcing of the ageostrophic wind can conveniently be divided into
the two™terms shown in brackets on the right in (6.40). The first term is
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referred to as the isallobaric wind. It can easily be shown to be proportiona]
to the gradient of the geopotential tendency (see Problem 6.13), and g
directed down the gradient of the tendency field. This contribution to \A
is shown schematically for a baroclinic wave disturbance by the black arrowsg
in Fig. 6.15. The second term in brackets in (6.40) may be called the advective
part of the ageostrophic wind. For baroclinic waves in the jet stream the
advective term is dominated by zonal advection so that

_a .0
kX (Vg VIV~ = (kxV,) =~ o' d—(VP)

where # is the mean zonal flow, and we have used the definition of the
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Isallobaric and advective contributions to the ageostrophic wind for baroclinic
waves in the westerlies. Solid ellipses indicate perturbation geopotential patterns
at 300 and 850 mb. Dashed ellipses show geopotential tendency pattern with positive
and negative tendencies indicated by + and — signs, respectively. The mean zonal
flow distribution in which the waves are embedded is indicated on the right for
each level. Solid arrows show the isallobaric part of the ageostrophic wind and
open arrows show the advective part. (Adapted from Lim er al., 1991.)
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geostrophic wind (6.7). The advective contribution to the ageostrophic flow
is shown by the open arrows in Fig. 6.15. Note that owing to the strong jet
stream at 300 mb at the center of the waves the advective contribution
dominates over the isallobaric contribution. On the flanks of the waves at
300mb the two contributions are of comparable amplitude, so the net
ageostrophic wind is small. At the 850-mb level, on the other hand, the two
contributions nearly cancel at the center of the perturbations, while the
advective contribution is nearly zero on the flanks. The net result is that
the ageostrophic motion for baroclinic waves is primarily zonal in the upper
troposphere and primarily meridional in the lower troposphere.

"_——’
6.5 Idealized Mo\g:I of a Baroclinic Disturbance

In Section 6.2 we showed that for synoptic-scale systems the fields of
vertical motion and geopotential tendency are determined to a first approxi-
mation by the three-dimensional distribution of geopotential. The results
of our diagnostic analyses using the geopotential tendency and omega
equations can now be combined to illustrate the essential structural charac-
teristics of a developing baroclinic wave. For reference, we restate here the
qualitative content of the tendency and omega equations:

Geopotential Tendency Equation

. [fall + .. .
Geopotential{ . . o vorticity advection g
Tis -~

cold
+( )advection decreasing with height
warm

Omega Equation

( Rising

.. ) motion X rate of increase with height of vorticity advection
Sinking -

warm )
-+ ( ) advection
cold

In Fig. 6.16 the relationship of the vertical motion field to the 500- and
1000-mb geopotential fields is illustrated schematically for a developing
baroclinic wave. Also indicated are the physical processes that give rise to
the vertical circulation in variou? regions.
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Fig. 6.16 Secondary circulation associated with a developing baroclinic wave: (top) schematic

500-mb contour (solid line), 1000-mb contours (dashed lines), and surface fronts;
(bottom) vertical profile through the line 11’ indicating the vertical motion field,

Additional structural features, including those that can be diagnosed with
the tendency equation, are summarized in Table 6.1. In this table the signs
of various physical parameters are indicated for vertical columns located

at the position of (A) the 500-mb trough, (B) the surface low, and (C) the = {

500-mb ridge. It can be seen from this table that in all cases the vertical

motion and divergence fields act to keep the temperature changes hydrostatic. |-

and vorticity changes geostrophic in order to preserve thermal wind balance.
Following the nomenclature of Chapter 5, we may regard the vertical

and divergent ageostrophic motions as constituting a secondary circulation

imposed by the simultaneous constraints of geostrophic and hydrostatic
balance. The secondary circulation described in this chapter is, however,

completely independent of the circulation driven by boundary layer pump- o
ing. In fact, it is observed that in midlatitude synoptic-scale systems, the e

vertical velocity forced by frictional convergence in the boundary layeris  {
generally much smaller than the vertical velocity owing to differential 2
vorticity advection. For this reason we have neglected boundary layer

friction in developing the equations of the quasi-geostrophic system.

frs A AT
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Table 6.1  Characteristics of a Developing Baroclinic Disturbance
Physical A B C
parameter 500-mb trough Surface low 500-mb ridge
HEP)/ar Negative (thickness Negative Positive (thickness
(500-1000 mb) advection partly (adiabatic advection partly
canceled by cooling) canceled by
adiabatic warming) adiabatic cooling)
w (500 mb) Negative Positive Positive
ad/at Negative Negative Positive
(500 mb) (differential (vorticity (differential
thickness advection) advection) thickness advection)
ag, /ot Negative Positive Positive
(1000 mb) (divergence) (convergence) (convergence)
3L, /at Positive Positive Negative
(500 mb) (convergence) (advection partly (divergence)
canceled by

divergence)

It is also of interest to note that the secondary circulation in a developing
baroclinic system always acts to oppose the horizontal advection fields.
Thus, the divergent motions tend partly to cancel the vorticity advection
and the adiabatic temperature changes owing to vertical motion tend to
cancel partly the thermal advection. This tendency of the secondary flow
to cancel partly the advective changes has important implications for the
flow evolution. These will be discussed in Chapter 8.

It should now be clear that a secondary divergent circulation is necessary
to satisfy the twin constraints of geostrophic and hydrostatic balance for a
baroclinic system. Without such a circulation geostrophic advection tends
to destroy the thermal wind balance. The secondary circulation is itself
forced, however, by slight departures from geostrophy. Referring again to
Fig. 6.16, we see that in the region of the upper-level trough (column A)
cold advection causes the geopotential height to fall and thus intensifies
the horizontal pressure gradient. The wind, therefore, becomes slightly
subgeostrophic and experiences an acceleration across the isobars toward
lower pressure. It is this cross-isobaric ageostrophic wind component that
is responsible for the convergence that spins up the vorticity in the upper
troposphere so that it adjusts geostrophically to the new geopotential distri-
bution. In terms of the momentum balance, the cross-isobaric flow is
accelerated by the pressure gradient force so that the wind speed adjusts
back toward geostrophic balance. In the region of the upper-level ridge
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analogous arguments apply, but in this case the ageostrophic flow leadg
to a divergent secondary circulation. In both cases, as we will see in Chapter
8, the ageostrophic flow toward lower pressure is associated with conversiog
of energy from potential energy to kinetic energy.

Problems

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Show that the static stability parameter o= —ad In /dp may be writtep
in terms of & as

3D 1a<I>(R 1) 1 ( d R) P
o=T5=——|—~1}=— -
ap~ p ap \¢, p\dlnp ¢,/alnp
Show that for an isothermal atmosphere o, as defined in Problem 6.1,
varies inversely as the square of the pressure.

Suppose that on the 50-kPa (500-mb) surface the relative vorticity at :

a certain location at 45°N latitude is increasing at a rate of 3 x 10 %g™!
per 3 h. The wind is from the southwest at 20 ms™' and the relative
vorticity decreases toward the northeast at a rate of 4x 10 ®s™! per

100 km. Use the quasi-geostrophic vorticity equation to estimate the

horizontal divergence at this location on a 8 plane.

Given the following expression for the geopotential field:
D =Py p)+ cfo{~ylcos(mp/po) + 11+ k™" sin k(x —c1)}

where @, is a function of p alone, c is a constant speed, k a zonal
wave number, and p,= 100 kPa (1000 mb):

(a) Use the quasi-geostrophic vorticity equation to obtain the horizon-
tal divergence field consistent with this ® field. (Assume that
df/dy=0.) -

(b) Assuming that w(p,)=0, obtain an expression for w(x, y, p, 1) by
integrating the continuity equation with respect to pressure.

(c) Sketch the geopotential fields at 75 kPa (750 mb) and 25 kPa
(250 mb). Indicate regions of maximum divergence and conver-
gence and positive and negative vorticity advection.

For the geopotential distribution of Problem 6.4 obtain an alternative

expression for w by using the adiabatic form of the thermodynamic 3
energy equation (6.13). Assume that o is a constant. For what value
of k does this expression for w agree with that obtained in Problem 6.47

As an additional check on the results of Problems 6.4 and 6.5 use the |
omega equation (6.29) to obtain an expression for w. Note that the = |

PROBLEMS

6.7.

6.8.
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three expressions for w agree only for one value of k. Thus, the
geopotential field ®(x, y, p, t) of Problem 6.4 is consistent with quasi-
geostrophic dynamics only for one value of the zonal wave number.

Suppose that the geopotential distribution at a certain time has the
form

@(x, y, p) = Po(p) ~ foUoy cos(mp/ ps) + fock ™" sin kx

where U, is a constant zonal speed and all other constants are as in
Problem 6.4. Assuming that f and & are constants, show by evaluating
the terms on the right-hand side of the tendency equation (6.23) that
x =0 provided that k*=o""(fyw/p,).> Make qualitative sketches of
the geopotential fields at 750 mb and 250 mb for this case. Indicate
regions of maximum positive and negative vorticity advection at each
level. (Note? the wavelength corresponding to this value of k is called
the radius of deformation.)

For the geopotential field of Problem 6.7 use the omega equation
(6.29) to find an expression for w for the conditions in which y =0.
Hint: let w = W, cos kx sin{(@p/p,) where W, is a constant to be
determined. Sketch a cross section in the x, p plane indicating trough
and ridge lines, vorticity maxima and minima, vertical motion and
divergence patterns, and locations of maximum cold and warm tem-
perature advection.

+

9. Given the following expression for the geopotential field:

D(x, y, p) = Qo p)+fo[— Uy + k™' V cos(mp/ po) sin k(x — ct)]

where U, V, and c are constant speeds, use the quasi-geostrophic
vorticity equation (6.19) to obtain an estimate of w. Assume that
df/dy =B is a constant (not zero) and that o vanishes for P=po.

For the conditions given in Problem 6.9, use the adiabatic thermo-
dynamic energy equation to obtain an alternative estimate for w.
Determine the value of ¢ for which this estimate of o agrees with
that found in Problem 6.9.

- For the conditions given in Problem 6.9, use the omega equation

(6.29) to obtain an expression for w. Verify that this result agrees with
the results of Problems 6.9 and 6.10. Sketch the phase relationship
between @ and w at 250 mb and 750 mb. What is the amplitude of w
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if B=2x10"m 's™", U=25ms™", V=8ms™', k=2w[(104km),
fo=10"%s"' 0=2x10""Pa?> m?s™?, and p,=10"kPa?

6.12. Compute the Q-vector distributions corresponding to the geopotentia]
fields given in Problems 6.4 and 6.7.

6.13. Show that the isallobaric wind may be expressed in the form
visalll = -j}).z VX

where y =9®/4t
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In Chapter 13 we will discuss numerical techniques for solving the
equations governing large-scale atmospheric motions. If the objective is to
produce an accurate forecast of the circulation at some future time, a
detailed numerical model based on the primitive equations and including
processes such as latent heating, radiative transfer, and boundary layer drag
should produce the best results. However, the inherent complexity of such
a model generally precludes any simple interpretation of the physical
processes that produce the predicted circulation. If we wish to gain physical
insight into the fundamental nature of atmospheric motions, it is helpful
to employ simplified models in which certain processes are omitted and
Compare the results with those of more complete models. This is, of course,
just what was done in deriving the quasi-geostrophic model. However, the
qQuasi-geostrophic potential vorticity, equation is still a complicated non-
linear equation that must be solved numerically. It is difficult to gain an
appreciation for the processes that produce the wavelike character observed
in many meterological disturbances through study of numerical integrations
alone.
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