CHAPTER VII

THERMODYNAMIC PROCESSES IN THE ATMOSPHERE

In this chapter we shall study a number of thermodynamic processes of great impor-
tance in the atmosphere.

Two of these processes will be isobaric cooling (Sections 1 and 2). We have in that
case

dg # 0; dp=0; dh = dq.

All the other processes to be analyzed will be adiabatic, except that of Section 11.
Three of them will also be isobaric; for them:

0q =0; dp=0; dh=06q +vdp=0.

That is, they will be isenthalpic. And they will not in general be reversible. These
processes are the vaporization or condensation of water in non-saturated air (Section
3), the horizontal mixing of two air masses (Sections 4 and 5) and the freezing of a cloud
(Section 10). The vertical mixing of air masses (Section 12) may be considered as a
combination of two adiabatic processes, one of them isobaric. Of the remaining
processes, one will be non-adiabatic: the polytropic expansion (Section 11); another will
be adiabatic and reversible, and therefore isentropic: the reversible expansion of
saturated air (Sections 6 — 8). The last one will be performed with an open system: the
pseudoadiabatic expansion (Section 9).

It is easy to understand why most of the impo-tant processes in the atmosphere arc
adiabatic. Our systems will in general be rather large portions of the atmosphere. We
can generally disregard what happens on the ground surface and the cooling by
radiation, and the heat conduction processes through the air are relatively inefficient.
If the air parcel is large enough to be insensitive to what happens on its borders, we
may consider it as a closed system which does not exchange heat with its surroundings.

7.1. Isobaric Cooling. Dew and Frost Points

In every closed system consisting of moist air, the specific humidity and the mixing
ratio remain constant. This is not so for the partial pressure of water vapor or for the
relative humidity. The first one is constant with temperature but proportional to the
total pressure (cf. Chapter IV, Equations (76); also by considering ¢ = N,p). The
relative humidity varies strongly with the temperature, due to the rapid variation of
the saturation vapor pressure e,,, and is proportional to the pressure, through e.

Let us consider a mass of moist air cooling at constant pressure, and therefore
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. ":pontracting. The variables ¢, r and e will remain constant, but U, will increase due to
the decrease of e,. If the cooling continues, e, will become equal to e, and U, will
gsach unity: the air has reached saturation. The temperature at which saturation is
" reached is called the dew point, T,4. This is a new variable that can be used to charac-
 terize the humidity of the air. If the saturation is reached with respect to ice, rather
| 'ﬂlan to water (at a temperature below 0 °C), the temperature is called the frost point, T;.

, i ~ Now, let us assume that the pressure may change (by rising or subsiding of the air)
.;nd that the humidity of our system may also change (for instance, by incorporating
- water vapor by turbulent diffusion from a water surface, or because rain fell through the
-._' air mass), or that we simply want to compare air masses that differ in humidity and
~ pressure. If we want to find the relation between the dew point and the mixing ratio and
. total pressure, we must apply the Clausius-Clapeyron equation describing the equili-
" birum curve water-vapor. We first differentiate logarithmically the approximate ex-
. pression e = pr/e and obtain

dlnexdInr+dinp. (1)
- The Clausius-Clapeyron equation is

dlne I,

, dT, R,T}
. where e is the vapor pressure in our air mass at temperature 7. 7 is the dew tempera-
~ ture, and therefore corresponds to e over the saturation curve (see Figure VII-1).
~ Due to this relation, T, and e are humidity parameters giving equivalent information.
Solving for dT,;, we find

2 2
R dlnegR‘}i(dlnr—rdlnp). (3)
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Fig. V1I-1. Relation between temperatures and vapor pressures.
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Or, if we want to express it as a relative variation d7,/Ty=d In T:

d1an=R;nd1neg¥(d1nr+dlnp)g5x 10-2(d1nr +dlnp)
; . @)

where the last expression corresponds to the approximation T;~270K and indicates
that the relative increase in T, is about 5% of the sum of relative increases in r and p.
By integrating Equation (2) between T and 7, we obtain

T
I. T-T.
]1‘1&=—anw=l I—"z y i — 4 (5)
e RJT R, TT,

and solving for (7 — T,). using decimal logarithms and substituting numerical values
for the constants, we have

T-—T,=425x107*TT,(—logU,), (6)
which, for a rough estimate of (T'— 7,) as a function of U,, can be written, with
o A0 |

T —T,=35(=logU,). (7)

Figure VI1I-1 shows the relations between the values for temperature and vapor
pressure. The above integration was performed between Q and R.
So far we have considered the temperatures at which the equilibrium curve of

phase transition is reached, such as T, for point Q in Figure VII-1 or point D in
Figure VI1I-2, and T, for point F in Figure VII-2. But no thermodynamic argument can
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Fig. VII-2. Dew-and [rost-points.
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say whether the processes of condensation or sublimation will actually start taking
"place at these points, when isobaric cooling proceeds. Condensation does start at the
“dew point, although this process requires the presence of solid surfaces or of certain
particles, called condensation nuclei. If neither of them were present, there would not
‘be condensation (at least not along a certain temperature interval below the dew
: point) and the air would become supersaturated in water vapor (with e>e¢,,). However,
~ atmospheric air always contains abundant condensation nuclei, and supersaturation
~does not occur to any appreciable extent. Therefore, although this is an important
,L subject in the study of cloud physics, we do not need to be concerned with it here.
The situation is somewhat different regarding the processes of sublimation and of
- freezing. If ice surfaces are already present, sublimation or freezing will proceed readily
- on these surfaces as soon as the water or the vapor, as the case may be, reaches the
. equilibrium curve. In the absence of ice surfaces, on the other hand, although certain
- surfaces, either in macroscopic extensions or on minute particles of the atmospheric
- aerosol (“ice nuclei”) favor the appearance of ice crystals, they only become active at
- temperatures well below the equilibrium curve. Neither does spontaneous nucleation
| take place with small supercooling of water or supersaturation of water vapor.

Therefore, when isobaric cooling of moist air proceeds, starting from a point such
as P in Figurc VII-2, sublimation will not in general occur at F. Between F and D,
air will be supersaturated with respect to ice, and may only condense to water at the
point D. It is interesting to derive the relation between dew and frost temperatures.
- This is an important point with respect to aircraft icing and surface fogs.

If we apply the Clausius-Clapeyron Equation (Chapter IV, Equation (50)) to both
the vaporization and the sublimation curves, between the points D and F and the
triple point P,, we obtain:

e

me-bL-T%_LL-T 8)

e R, TT, R, L%

e e e

where e, is the triple-point vapor pressure, and /, and /, are considered as constants.
Taking into account that 7,=273.16 K= T,=273.15K, that the dew and frost points,
expressed in “C are

|
l,
|
P Oy T (9)
=T~y T—1 (10)
_' and that
i :
r LTy& TT (11)
F we may write
| Bs (12)
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Although the mean values to be taken for the latent heats vary somewhat with the
temperature interval, we may use with good approximation the values for —10°C.
which give

LAl 22918 (13)
From this value, it is easily seen that
[tg — tel = |1g]/9 = |1,/8. (14)

The dew point temperature can be found in a diagram by following the isobar from
the image point P representing the air until it intersects the saturation mixing ratio
line corresponding to the mixing ratio r of the air, as shown in Figure VII-3.

&ZD(T,D,W ¥

Fig. VII-3. Dew-point on a diagram.

We finally remark that, according to their definitions, 7, and 7; are (as e) invariants
for isobaric changes of temperature of a closed system consisting of moist air.

7.2. Condensation in the Atmosphere by Isobaric Cooling

Dew and frost form as a result of condensation or sublimation of water vapor on solid
surfaces on the ground, which cool during the night, by radiation, to temperatures
below the dew or the frost point of the air in contact with them.

If a mass of atmospheric air cools isobarically until its temperature falls below the
dew point, condensation will occur as microscopic droplets formed on condensation
nuclei; we call this a fog. This occurs in the atmosphere due to the radiative cooling
of the air itself or of the ground with which it is.in contact (radiation fogs). As the
droplets form, and because these droplets behave as black bodies in the wavelengths in
which they irradiate, the radiation emitted by the layer increases, which favors further
loss of heat. Condensation may also occur when an air mass moves horizontally over
the ground toward colder regions, and becomes colder itself by heat conduction to the
ground (advection fogs). In both cases, the cooling is practically isobaric, since pressure
variations at the surface are usually very small (on a relative basis).

Once condensation starts, the temperature drops much more slowly, because the
heat loss is partially compensated by the release of the latent heat of condensation. This
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sets a virtual limit very close to the dew point, an important fact in forescasting
minimum temperatures.

For an isobaric process, the heat absorbed is given by the increase in enthalpy
(Chapter IV, Equation (106)):

dqg =dh=¢,dT + 1, dr. (13)

 If we write r=ce/p, as p is a constant, dr=(g/p) de. In this case e corresponds 1o
: saturation, and we may apply the Clausius-Clapeyron Equation (Chapter IV, Equa-
~ tion (48)) and write e=e¢,,; we obtain:

drgide= El‘vewz dT [’16)

p PR, T

~and
2
Sg = (c,, i ”"e“‘z) dT, (17)
PR,T
or else
2

5q=(ﬂ-+fﬁ) de, . (18)

Fe. p

The relation between d Tand de,, is indicated in Figure VII-4, on a vapor pressure
diagram.

Fig. VII-4. Relation between the changes in temperature and in vapor pressure during condensation.

If we compute the heat loss — dq from other data (e.g.: radiation loss), Equation (17)
allows an estimation of the corresponding decrease in temperature —d7. Similarly,
the decrease in vapor pressure — de,, may be computed from Equation (18). From the
gas law, the mass of water vapor per unit volume is given by e, /R, T, and its variation
with temperature is de,/R,7T—(e,/R,T ?)dT. Introducing the Clausius-Clapeyron
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relation between de,, and d7, it can be shown that the second term is much smaller

than the first one (~5%) and can be neglected for the following approximate argument.

We can write thus for the mass of condensed water per unit volume dc:
1 le.

dex ———de, =

— 19
R, T R )

(where the last relation is given, as before, by the Clausius-Clapeyron equation). If,
for instance, we want to know the necessary cooling to reach a concentration of liquid
water Ac = 1 g water m ™ air, starting with saturated air at 10°C, Equation (19) gives
a result of AT= —1.6"C (where we substituted finite differences for differentials).

We may notice that according to Equation (19), and using 4 instead of d for the
variations.

— Ade, = R,TAc (20)

is roughly constant for a constant Ac¢ in the usual interval of temperatures. Computa-
tion gives 1.3 to 1.4 mb for Ac = 1 g water m ~* air. We might use the vapor pressure
diagram T, e to represent lines of equal Ac. Their points would lie Ae, above the
saturation curve for each temperature, as shown schematically in Figure VII-5. These
lines of constant liquid water content in fogs are related to visibility. Equation (18)
shows that for a given loss of heat 6q <0, —de,, is larger if T is higher, because e, within
the bracket increases more rapidly than T?; dc, approximately proportional to (—de,,)
accordingto(19),is therefore larger for higher T and smaller for lower T. For this reason
dense fogs are less frequent at low than at mild temperatures.
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Fig. VII-5. Lines of constant liquid water content on a vapor pressure-temperature diagram.
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7.3. Adiabatic Isobaric (Isenthalpic) Processes. Equivalent and Wet-Bulb Temperatures

We shall consider a closed system consisting of moist air and water. The same theory
will hold for moist air and ice, with the corresponding substitutions (mass and specific
heat of ice for mass and specific heat of water, latent heat of sublimation for latent
heat of vaporization, etc.).

We shall study, for this system, adiabatic isobaric processes, therefore isenthalpic
processes. We are interested in the expression for the enthalpy variation, which must
be set equal to zero, thus providing an equation relating the temperature and humidity
variables for these processes. The expression for enthalpy was calculated in Chapter 1V,
Section 14 under several forms; we shall use here Equation (104):

H = (mycpqg + me, )T + 1(T)m, + const. (21)

If we consider two states of the system linked by an isenthalpic process, the above
expression may be applied to one of them, and a similar expression to the other:

h' = (mye,, + me )T + 1(T")m, + const.

where m,, m, and the additive constant are the same as for the former state. And from
h=h" we obtain:

(mycy, + me (T = T)+ 1(T)m, =1 (T)m, =0 (22)

which may be written:

7oy WTOm o L(Tym,
Myc,, + e, myc,, +m,c,
The denominator on each side is a constant for each system. Each of the two sidcs of
the equation is therefore a function of the state of the system only; in other words.
this expression (either on the left or on the right side of Equation (23)) is an invariant
for isenthalpic transformations. If we divide both numerator and denominator in the
quotients by my,, we have

L L i
rp BT g, WD )
Cpq T+ Ny G TG, (24)

where r, = (m, + m,)/my = m/mg4. Notice that (c,q + r,c,), constant for each system,
will vary for different systems according to their total contents in water substance
(vapor plus liquid).
we may now start simplifying the expression by neglecting the heat capacity of the
water:
T+ —IL(I)}— = const.
Co, T+ ey,

Here the denominator is no longer a constant. If we also consider that re,, is small in



124 ATMOSPHERIC THERMODYNAMICS

comparison with ¢,,, and neglect the temperature variation of /,, Equation (24)
becomes

T + 5-lr-’ =T+ Lr = const. (25)

Cy &
where ¢, may be taken as c,, or, with better approximation, as c,,+ Fc,,, where 7 is
an average value of r (an even better approximation, from Equation (24), would be to
use the maximum value of r, with all water as vapor).

Equations (23) and (24) do not imply any more approximations than those made in
deriving formula (104) from Chapter IV, Section 14. Equation (25) could also have been
derived directly from the approximate Equation (106) in that chapter.

Let us consider the physical process that links two specific states (7, r) — unsaturated
moist air plus water —and (7. r') - saturated or unsaturated moist air without water -
of the system, and to which Equation (24) corresponds. We have 1 kg of dry air
with 10* r grammes of water vapor and 10° (r'—r) grammes of liquid water (which
may or may not be as droplets in suspension). We are thus assuming that r’'>r, and
also that saturation is not reached at any time (except eventually when arriving at the
final state). The liquid water evaporates, and so the mixing ratio increases from r to r'.
As this water evaporates, it absorbs the vaporization heat, which must be provided by
the moist air itself and the water, because we are assuming that the system is adiabati-
cally isolated. The temperature decreases from 7' to T'. As at any instant the state of
the system differs finitely from saturation, the process is a spontaneous and irreversible
one. A process producing the opposite modification (condensation of water) could be
imagined, but it would be actually impossible. This is however immaterial in our case.
because at no stage have we made the assumption of reversibility and only the first
law has been applied. We shall deal with such a process first.

The isobaric equivalent temperature or, more simply, the equivalenr 1emperature is
defined as the temperature that moist air would reach if it were completely dried by
condensation of all its water vapor, the water being withdrawn in a continuous fashion:
the whole process is performed at constant pressure and the system is thermally
isolated (except for the removal of water). We shall designate it by T, or 7.. With
this definition, the process previously described and Equation (24) will not be strictly
applicable, due to the removal of liquid. If we want to make an exact formulation, we
should start by considering the infinitesimal variation dH:

(mycpq + mC,)dT + (T) dm, = 0 (26)

where we assume that there is no liquid water initially. dm, is assumed to be negative,
which means that a mass |dm,| of vapor condenses. Now, before considering further
condensation, we remove that liquid water. The enthalpy of the system will thereby
decrease by h,, dm,, but this does not affect the value of T. For the next infinitesimal
condensation, Equation (26) will again be valid, with the new value of m,. Thus, the
equation adequately describes the process; m, and, therefore, the whole bracket in the
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first term are variable. An exact integrated expression could be obtained from (26)
(see Problem 3). Within the usual approximation adopted in Equation (25), however, the
- term m,c,, is considered negligible, and we can write

T Tk e (27)
L

- and introducing numerical values for /, and ¢,4:
T,.= T+2.5(10°r) (28)

- where (10%r) is the mixing ratio expressed as (g of vapor kg ! of dry air).

.~ We may now consider the case when we go in a similar way from any value r to
~ saturation, r,,. This is the process with which we are concerned in the use of the wet-
bulb psychrometer. This instrument consists of two thermometers, one with a dry
bulb to measure the air temperature, and the other one having its bulb covered with
a wet muslin wick. Air must flow around the wet bulb and if it is non-saturated, water
will evaporate until it becomes saturated. If steady state has been reached, the necessary
enthalpy cannot come from the water, which has a constant temperature, but from the
air itself. The thermodynamic system to be considered is a certain (any) mass of air
that has flowed around the bulb, plus the mass of water which was incorporated into
the air by evaporation from the muslin. We are thus considering a process similar to
that which we have been studying, but with a difference: water has not undergone the
same temperature variation as the initial air, as in the process of Equation (24),
neither has it been incorporated and evaporated into the system at a variable tempera-
ture; in our present process the added water was from the beginning at the final
temperature of the whole system. Again this difference is ignored in the approximation
of Equation (25). We may then write, with the same approximation:

l

T}c=ﬂw+—f"—rw=T+—"r, (29)

(‘Dd l:'.Fiu

where T, or T, is the isobaric wet-bulb temperature or simply the wet-bulb temperature,
and r,, is the saturation mixing ratio at the temperature T,,. The wet-bulb tempera-
ture may thus be defined as the temperature which air attains when water is evaporated
into it until saturation is reached, while the system (air plus water) is kept at constant
pressure and does not exchange heat with the environment.

When Equation (29) is applied to compute 7}, , successive approximations must be
made, as r,, is also unknown. In normal meteorological practice, however, the value
of the isobaric wet-bulb temperature is known, and one wishes to deduce either the
dew point, T,, or the vapor pressure of the air, e, which is the saturation vapor
pressure corresponding to the dew-point temperature. Replacing r = e/p in (29) (right-
hand equation), solving for ¢ and considering that e = e (T;) (cf. Figure VII-1), we find

edTy = ey~ 52;—‘3 (i — 2y, (30)

v
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This is one version of the so-called Psychrometric Equation. The coefficient of
p(T—T,,) is often referred to as the psychrometric constant, although it will vary
slightly with T, (via the temperature dependence of /,, and as a consequence of
various second-order terms which have been ignored in Equation (30)).* At tempera-
tures (T or T,,) less than 0 “C, this equation still applies as long as the conventional
wetted muslin evaporator does not freeze.

If we have ice (usually a very thin layer frozen on the thermometer bulb) as the
evaporating phase, the equilibrium temperature is known as the isobaric ice-bulb
temperature, T;;. In this case, analogous to Equation (30),

ew(n>:ei(nj)~59§ftr— T,) = e(Ty), (1)

Elg

where the actual vapor pressure can be interpreted in terms of either a dew-point or
frost-point temperature (although the former is normally employed, as a conventional
humidity parameter, in order to avoid ambiguity and apparent discontinuities in the
moisture field).

The previous theory of the wet-bulb psychrometer does not take into account the
possibility that part of the air flowing around the bulb may not reach saturation, or
that the temperatures of air and water may not reach equilibrium. The identification
of T;,, as defined by Equation (29) with the temperature read in the psychrometer is

subject to experimental verification; this turns out to be satisfactory, provided there is
enough ventilation®*, and that the bulbs are small enough to exchange little infrared
radiation with the screen or other objects at air temperature.

In regard to the process defining 7, , the same observations as made for T, are
pertinent. We deal with a process which is spontaneous (irreversible) in the sense of
water evaporation: it would be an impossible one in the opposite sense.

Another important meteorological process is described by this type of transforma-
tion: air cooling by evaporation of rain, at a given level. In this case, the system
consists of a certain air mass plus the water that evaporates into it from the rain that
falls through it. The initial temperature of the water, in this case. will be that of the
raindrops as they pass through that level. and the air may or may not reach saturation.
If it does, its temperature will decrease to the value f i

We may notice that T;, and T, are linked by Equation (29), and they are the maxi-
mum and the minimum value, respectively, that the air may attain through the isenthal-
pic process that we have considered. They are therefore two parameters giving
equivalent information about the temperature and humidity state of the air. This
relation can be expressed graphically by representing the process on a vapor pressure

* Its value can be expressed by 0.000660 (1 + 0.00115 1;,.), Where 1y, is the Celsius wet-bulb temperature.
** An air flow between 4 and 10m s~ ! over the bulbs is recommended.
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- diagram. If we substitute the approximate expression ee/p for r in Equation (25) and

rearrange the latter, we obtain

e’—e:—CL;E(T'—T}. (32)
el

For each value of p, (T'—T) is proportional to (¢’ —e); i.e., the adiabatic isobaric
4 prop
process in which we are interested occurs in the diagram along a straight line passing

through the image point P(7.¢) with a slope —(c, /el,)p. This is represented in

Figure VII-6. Extending the line toward increasing temperatures, it will intersect the
horizontal axis (e=0) at T,., and in the other direction it intersects the saturation
curve at 7.

el

T S S, {

) A A T 1=

Tiw T Tie T

Fig. VII-6. Adiabatic isobaric process represented on a vapor pressure-lemperature diagram.

7.4. Adiabatic Isobaric Mixing (Horizontal Mixing) Without Condensation

We shall now consider another adiabatic isobaric (and therefore isenthalpic) process:
the mixing of two moist air masses, with different temperatures and humidities, but
at the same pressure. This process corresponds in the atmosphere to horizontal
mixing. Condensation is assumed not to take place.

If we use the subscripts 1 and 2 for the two masses, we shall have

mlhl + m2h2_= {ml + mz}h
or
AH = m(h — hy) + my(h — hy) = m;Ah, + my4h, =0, (33)

where
Ahy =¢, (T —T))

Ahy =, (T — Ty):;
T being the final temperature, and (Chapter 1V, Equation (87))
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Cp, = ¢p (1 +0.87g;)
(i=1, 2). Substituting in 4H:

myc, (1 +087g,)(T = Ty) + mye,, (1 +0.87¢,)(T—T3)=0. (34)
And solving for T:

_(m T, + m;T,) + 087(mq, T, + myq,T;) "

T - (35)
m + 0.87(m,q, + msq,)

The total mass is m=m, +m,. and the total mass of water vapor m,q, +mi,qy,.
As this must remain constant, it will be equal to mgq, ¢ being the final specific humidity.
Therefore ¢ is the weighted average of ¢, and ¢,:

g+ mag,

(36)
m
Introducing this relation in Equation (35) gives
T (m,T, + m,T,) + 0.87(mq, T, + mzqu;.}'
m(l + 0.87¢q)
If we neglect the water vapor terms, Equation (35) becomes:
szi'ﬂ + m,T, (37)

m

That is, the final temperature is approximately given by the weighted average of the
initial temperatures.

The potential temperature 0 of the mixture is also given by similar formulas, as may
be seen by multiplying both sides of Equation (35) or (37) by (1000/p)*, taking into
account that p is a constant. In particular, we conclude that 0 is also given approxi-
mately by the weighted average of ), and 6,:

mlﬂl + mzﬂz

0 =~ (38)

m

If we use the approximate relation between e and g (g=ze/p; see Chaptef IV, Section
11) we obtain for the final vapor pressure:

e mpe, + m,e,

lie

(39)
m

We may notice that Equation (36) is valid for any mixture of two air masses, without
condensation, independent of the pressure values or variations, while Equation (39)
is only valid for an isobaric mixture, because in deriving it we assumed p, =p, =p.

Formulas (36), (37) and (39) indicate that the final ¢, T and e are obtained by com-
puting the averages of their initial values, weighted with respect to the masses. Thus
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._:_' P, and P, are the image points of the two air masses in a vapor pressure diagram
(Figure VII-7), the image point P of the mixture will lic on the straight line joining
and P,, at a distance such that P, P/PP,=m,/m,*,

Fig. VII-7. Effect of mixing on relative humidity.

- The dashed curves are curves of equal relative humidity (U,,, =e,/e., and U,,=¢e;/e.5.

- respectively). Tt is easy to see that, due to the curvature of the relative humidity
‘isopleths, the value of U, of the mixture will always be higher than the weighted

- average of U, and U,,; for instance, if U,, =U,,=U,, any mixture will give a
point to the left of the curve U,,.

] 7.5. Adiabatic Isobaric Mixing With Condensation

- It becomes obvious on the vapor pressure diagram that, due to the increase in

 relative humidity produced by mixing, we may have the case of Figure VII-8, where

the image point of the resulting mixture corresponds to a state of supersaturation,
although both initial air masses were unsaturated.

- Asappreciable supersaturations cannot be realized in atmospheric air, condensation

- of water into droplets will occur in this case. Independently of how the real process

_ Occurs in nature, if we take into account that enthalpy changes do not depend on the

* This is easily seen by writing Equation (37) in the form

; T_Tl_"h_
Tz_T my

and Equation (39) in a similar form, and considering the similarity of triangles PP, 4, and P,PA-
in Figure VII-7.
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o P2 (Tz ,92)

=

T

Fig. VII-8. Condensation produced by mixing.

path, but only on the initial and final states, we may consider the whole process as
consisting (1) of a mixture giving supersaturated air as represented by P, followed by
(2) condensation of water until the saturation vapor pressure is reached. The latter is
the same type of isenthalpic process studied in Section 3, and can be represented on
the diagram by the corresponding straight line PP’. The latent heat released is respon-
sible for the heating from 7 to 7.

It may be noticed that the amount of liquid water produced per unit mass of air is
given by thedifference ¢ —g,, =r—r. =(g/p)(e—e,), where (e—e) is represented on the
diagram by the segment P'Q. The corresponding concentration of liquid water per
unit volume (cf. Section 2, Equation (20)) will be given by dc=(e—e,)/R,T.

This mechanism can in principle produce fogs (mixing fogs), but the amounts of
condensed phase produced by it in the atmosphere are very low. Tt is however efficient
in assisting other mechanisms (such as radiative cooling) to produce fogs.

A particular kind of mixing fog is steam fog, produced when cold air moves over
warmer water. The layer in contact with the water will be saturated at the water
temperature. As the cold air moves over this layer, a mixing process takes place,
resulting in condensation. Due to the temperature stratification, these fogs are
unstable, vertical stirring dissipating them into the drier air above. An example of this
type of fogis the so-called “Arctic Sea smoke’, produced by very cold air passing over
open water, e.g., in the North Atlantic or Baffin Bay or in open leads in the Arctic
Ocean.

A further important example of adiabatic isobaric mixing processes occurs during
the combustion of fuels when the exhaust gases are mixed with the atlmosphere. When
temperatures are low, fog may result from natural sources of combustion products
and at upper levels condensation trails may be produced by aircraft. Since such effects
are very important operationally, it is of interest to derive criteria for the occurrence
of such phenomena. We may assume that condensation will be initiated, regardless
of the temperature, only if the air in a mixed volume becomes saturated with respect
to liquid water. At those temperatures for which this generally occurs the freezing
nuclei content is usually adequate to cause transformation of the condensed phase to
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. ice crystals, whose growth will continue until the vapor content is reduced to the
. ice-saturation value. The significance of the phenomenon will depend on the concen-
. tration of the condensed (ice) phase. For combustion processes at the surface, this
- concentration will depend on many factors - the rate of fuel consumption, the local
. topography, the intensity of vertical mixing, the horizontal wind speed, etc. In this
case, a quantitative assessment of horizontal visibility (or of ice crystal concentration)
- is in general impossible. In the case of aircraft condensation trails, the situation is
. rather different since the generating element (the aircraft) is moving very rapidly
. relative to the air so that local accumulation of condensed phase is impossible.
- Accordingly, the aircraft problem will be analyzed in some detail, but it will be indica-
- ted how the primary criterion, for initiation of condensation. may be applied to
. surface combustion processes. We shall consider only a jet aircraft, for which all the
heat produced by combustion is ejected into the exhaust gases.

. We may imagine that the aircraft ejects heat and water vapor into a long thin
y cylinder along its flight path. The only significant diffusion and mixing will take place
at right angles to this line so that one can visualize the resulting trail (visible or not)
 as consisting of a conical-shaped volume of air to the rear of the aircraft. The air
-"_"" along the central axis of this cone will most closely resemble the air in the original
cyclindrical tube, and the air at the exterior limits will be essentially identical with
undisturbed environmental air. We may assume that the heat and water vapor are
diffused outwards in a similar manner and that radiative cooling plays a negligible
- role. For simplicity in numerical analysis, and because the geometry of the diffusion
processes is not at all critical, we may imagine all sections normal to the cone axis to
. be completely mixed, over a cross section, A.

Let us first derive the conditions under which saturation with respect to liquid (or
supercooled) water just occurs at a single value of 4. Let us imagine that m, kg dry
. air plus mr kg water vapor are drawn into the jet engine, combined with Fkg fucl
- (the fuel consumption per unit length of path) and exploded, adding #Q J of heat
- energy (Q is the heat of combustion, inJ kg ™!, expressed in terms of gaseous products
- of combustion) and Fuw kg water vapor to a volume A, containing originally m, kg dry
~ air and m,r kg water vapor.

Within the volume A. corresponding to a unit length of trail, the temperature will
be in excess of that of the environment and will be denoted by T+ AT the air will
. beassumed to be saturated with respect to liquid water and to contain a concentration
E of the condensed phase (here assumed to be liquid). The First Principle of Thermo-
dynamics enables us to state (neglecting the heat capacities of liquid water and com-
- bustion products other than water vapor; cf. Chapter IV, Equation (104), and notice
- that the heat term FQ must also be added in the present case)

FQ + ILEA=(m, + my))AT(c,, + rc,). (40)
The conservation of total water substance (r,) requires that

(my + my)r+ Fw=(m, + myr, + EA=(m, + m,)r,. (41)
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The equation of state for the resulting gas phase is (cf. Chapter IV, Equation (70))

A R(T + AT) R, (T + A4T) 1
§iss = = 1+|—-——1)r,|.
(my +my)(1 +r,) r p €
(42)
Therefore
2 Rd(T+AT}(| +"—“’). (43)
my + my 4 €

Dividing Equation (40) by (m, +m,) and using Equation (43) gives

ATI:c’pd—&(FQ+!,EA}]=£(FQ+L.EA), (44)
Ap Ap
where we have ignored some trivial terms in r and r,. Making the additional yet
equivalent assumption that vapor pressures are small relative to the total pressure,
a similar treatment of Equation (41) gives, making appropriate substitutions for r
and r,,
g€y, B £(e, + 4de,) . Ry(T + AT)
p P Ap
If AT at the point in the trail with maximum of trail density E is small relative to T.
we can invoke the Clausius-Clapeyron equation in the form

(EA — Fw). (45)

ele,
T
Substituting Equations (44) and (46) into Equation (45), and collecting terms, gives

; "l 1
L[’_ (i - 1)+ T} " E[_Q (& - 1) &7
p RdT A p RdT

4 Spage (1 -U,)=0. (47)
Ry

de, = AT. (46)

The coefficient of £ will always be positive (since e/, > R,T), and the final term zero
(for saturated air) or positive. The coefficient of F/4 can be either positive or negative.
If positive, £ will be everywhere negative (trail everywhere unsaturated). If the
coefficient of F/A is negative, the trail density will be positive, at least for small 4
(and a maximum for vanishing 4). If the environmental air is not saturated. the trail
density becomes zero for some value of A4, and whether or not a trail forms will
depend on conditions close behind the aircraft (where AT and Ae, may well be large).
[f the environmental air is saturated with respect to the liquid phase, a single criterion
for positive trail density exists for all values of A (hence is valid for large 4 and small
de,, and small AT, for which the above derivation is reasonably accurate). Thus. for
saturated air, condensation can occur if

RypT

Cl"n
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‘or, at a fixed temperature, if the pressure exceeds a critical pressure

efe,l, Q
=t =,
CpRaT" w

e (49)

Inserting reasonable values for the ratio Q/w (appropriate for kerosene or a similar
fuel) reveals that trails can only form at very low temperatures, achieved in the Arctic
in the winter at the ground and elsewhere in the upper troposphere when the tropo-
pause is high and cold. Since the air under these conditions would seldom, if ever, be
‘saturated with respect to liquid water, it is necessary to carry out a more elaborate
analysis than that given above if universal criteria for condensation trails are desired.

Even if temperatures in the trail, near the aircraft, are of the order of 10 to 20°C
one can still assume (e, + 4e,,) < p but one can no longer treat e, as a linear function of
temperature. Let us, therefore, replace Equation (46) by a higher-order approximation.
It is adequate to treat /,7~ 2 as virtually constant, so that

2
de, a'r"e‘; AT 4= (‘E""“’j Z) : (50)
R,T 2 \R,T

lie

Correct to this order of accuracy, one can use in the final term in Equation (47) the
approximate relation, obtained by neglecting AT in Equation (43) when substituting
in Equation (40),

(AT)* = BT (FQ + ILEA)AT. (51)
PCp,

Substituting Equations (44), (50) and (51) into Equation (45), and collecting terms.
gives

F Jx® 2
A A

where B,, B, and B, have the same values as they did in Equation (47), and where

3 22
B __selo” (53)

i 2¢, Ry P i '

In the above derivation, the correction term has been obtained by maintaining only
 the first (Q?) term in the expansion of (FQ +1,EA)?, since we are primarily interested
in solutions for which E is very small and A is relatively small.

E will have a maximum value, E,, for a value A, of the trail cross-section such
that CE/0A is zero, yielding
F B,

(54)

A, 2B,
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2
W ) (55)
4B,B; B,
The critical conditions for a trail are those for which E,, is zero, or
B4+ 2(B. B Y= (56)

Substituting for the values of the B parameters, the critical pressure, p_, becomes

2
gtk B {1 +00L = G U”)]' .
w

¥

The final term inside the brackets can be ignored since R;7<el,. In can be seen
that Equations (57) and (49) are identical for U,=100%, but differ substantially if
the air is relatively dry. This does not, however, imply a significant shift relative to
temperature since the critical curves are steep when plotted on a (7, Inp) diagram.
This can be demonstrated by logarithmic differentiation of Equation (57), assuming
as before that e, varies much more rapidly with temperature than does /.77 2. It
follows (using the Clausius-Clapeyron equation) that

(flhlfk) & S{Uz' o (FLELE;) 1 (58)
T /u. R,T dInT /u.

Condensation trails will occur for p=p_ (T) or for T< T_(p), as defined by Equation
(57).

This situation is illustrated on Figure VII-9, in terms of a (7,In p) diagram. Thus,
in zone ITI, condensation trails are impossible since supersaturation relative to liquid
water is not observed in the atmosphere. In zone I condensation trails will always

-Inp X \
\Uw‘l
\\ \
\ \
UW:O \ \

\ 0\

I \I[ \ IIT

\ A

T

Fig. V1I-9. Zones of an emagram relative to condensation trails.
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~form, regardless of the relative humidity. In zone Il the formation of condensation
 trails, or their absence, will depend on the ambient relative humidity; formation will
~ be possible if the (p. T) point lies to the left of the U,, line corresponding to the actual
- relative humidity.
. Equation (57) can also be used to predict the formation of low temperature fog.
It does not depend on the rate of fuel consumption but only on the ratio of heat to
water vapor in the exhaust gases. For engines and furnaces of the normal type Q must
- be reduced by the amount abstracted for heating purposes or for the performance of
- work. Eventually, of course, such heat would reach the atmosphere (conduction
. through walls, frictional losses, etc.) so that if one does not deal with localized sources
* (a chimney or exhaust pipe) the full value of Q may be employed.
" Itis now important, at least for jet aircraft trails, to deduce the criteria for visible
 trails. It has been estimated that for a condensation trail to be visible from a distance
. the trail density (of ice phase), 7 in kg m~?, must exceed 4 x 107° kg m ~*. This value
- will be taken as the critical trail density, /., and we shall investigate the conditions
- under which this value is just achieved at a single value of the cross-sectional area, A..
" This will correspond to a very small just-visible trail volume, moving along at a
fixed distance behind the aircraft. For denser. longer and hence more-persistent trails,
- values of />1_ can be investigated. Fortunately, at a fixed p and r, temperatures only
~ afew degrees colder than that yielding /=1, give a trail density very much greater than
R L.
We must now reformulate our basic equations to take into account the condensation,
.~ as ice particles, of 7/ kg m ™3, and the resultant saturation of the air with respect to ice
(provided of course that saturation relative to the liquid phase was achieved first).
- The equations are, of course, very similar to the previous set and can be written down
 immediately by analogy, viz.

F FY
IC‘+§C2+(Z) C;+Cy=0, (59)

- where
le, { &l
C,= 8__‘3(_*‘__ + U, - I) +c,,T,

p \R4T .
: I ;
C2=Eg(£’ + U, - ])—L’pdTI{'. (60)
p \R,T
i 212
&5 =——B—"—Qz—Z and C, = 4 ge,(1 — U,).
2¢,,Ryp°1 R,

By analogy to Equation (55), it follows that a visible trail is just possible if

_; - S _C
PSR 460y 6

(61)
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Substituting from the set in Equation (60), and recalling that &/ > R,T. one obtains

. 2 N2 § 2
1—L-'i=l(1_‘m"f—ﬂpr_£) —Ic( B +B—T). (62)
2 o SHEKL Q (.pd pT Eel 4

For consistency with criterion (57), which must also be obeyed, we can introduce U,
by
Uit’,- o Uw{’w . {63}

The final criterion curves can be obtained by compounding the two critical curves
(just saturation re liquid water and 7, =1.) for a given U, value, choosing the segment
al any pressure giving the lower critical temperature. The above equation is best
solved by computing U,, as a function of T(or p) for a fixed pressure (or temperature)
and interpolating the critical temperature (or pressure) for chosen U, values.

With the above results, we may also investigate the criterion for intensification or
dissolution of cirrus cloud when a jet aircraft flies through such cloud, or the parallel
case of using a burner to attempt to dissipate fog when surface temperatures are
low. In this case I.=0 and U, = 100%, so that the critical pressure below which cirrus
consumption will occur is, from Equation (62),

Z
el Bl (64)

o 2
e T w
It may be noted that the converse effect (i.e., condensation in the ice phase) is often
responsible for dense ice crystal fog at very low temperatures due to aircraft warm-up
and take-off, at times sufficiently severe to cause a temporary cessation of flying.

7.6. Adiabatic Expansion in the Atmosphere

The processes of adiabatic expansion (or compression) are particularly important.
because they describe the transformations taking place when an air mass rises (or
descends) in the atmosphere. They are therefore a part of the study of convection.
and we may consider what happens when a parcel of the atmosphere rises without
mixing with its environment, that is, during the adiabatic expansion of moist air. In
the more general case, the entire atmosphere is assumed to rise; the relations are, of
course, identical.

The first stage will be a moist adiabatic expansion of only one gaseous phase; this
is a simple process which was already considered in Chapter VI, Section 4, where we
saw that it differs very little from a dry adiabatic expansion. In other words, we can
write with good approximation x = i, (cf. Chapter IV, Equation (89)), and represent
the process by the equation

g — T(@) ) (65)
P
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(pin mb), which on a diagram corresponds to the dry adiabats: each curve is character-
ized by a potential temperature ¢, which must be the value of T where the curve inter-

- sects the 1000 mb isobar. Along each of these curves, entropy has a constant value

s = ¢, In 8 + const. These relations are shown in Figure VII-10 for a tephigram.

ascent of
non-saturated air
Ing
N P(T,p)
P
b

1000 mb

Fig. VII-10. Non-saturated adiabatic expansion on a tephigram.

The decrease in temperature will continue until saturation is reached, that is, until
the temperature is such that the air humidity is that of saturation (r, becomes equal
to r). From that moment on, the second stage proceeds. In this stage two possibilities
may be considered. The water (or ice) produced by condensation may remain inthe
air (cloud), so that if we reverse the process, the same water will evaporate during the
adiabatic compression along the descent; in this case, we shall call it a reversible
saturated adiabatic expansion. It is implied that the process must be slow enough to be
considered reversible. Being adiabatic and reversible, it is also isentropic.

We may also assume that the water or ice falls out of the system as soon as it is
produced. In this case we are dealing with an open system, and the process is called
pseudo-adiabatic.

Often an intermediate process will operate in the atmosphere, where part (not all)
of the water or ice condensed during the ascent falls out as precipitation,

Due to the condensation heat, cooling is slower in a saturated than in a moist
expansion. But as condensation must proceed along with the cooling (r,, decreases).
saturated adiabats must have, as was explained in Chapter VI, Section 4, an inter-
mediate slope between moist adiabats and the saturation mixing ratio isopleths.

It has been customary to talk of a rain stage, a snow stage, and a hail stage. By the
rain stage is meant the reversible adiabatic expansion during the ascent of air, with
production of liquid water; the snow stage refers to the production of ice. Of course
the temperature (and therefore the height in the atmosphere) determines whether we
are in one or the other stage. The transition does not occur in general at 0°C, but at
lower temperatures. At air temperatures less than —40°C, only sublimation occurs,
because at those low temperatures liquid droplets freeze spontaneously, so that only
ice clouds can exist. Mixed clouds can exist at intermediate temperatures between
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0°C and —40°C, but obviously they are not in thermodynamic equilibrium; the ascent
of the air will produce both condensation on droplets and sublimation on ice crystals,
while a continuous process of distillation from the droplets (with higher vapor pres-
sure) to the ice crystals (with lower vapor pressure) must occur. The so-called hail
stage assumed that at the level with temperature 0°C, the cloud water would freeze
isentropically (reversible adiabatic freezing). Nothing of that kind ever occurs in the
atmosphere, where freezing of droplets occurs only (at temperatures in excess of
—40°C) on ice nuclei (particles that favor freezing), and these only start being active
at temperatures considerably below 0°C, in increasing numbers as the temperature
decreases; in these conditions the freezing is of course irreversible. Our analysis (in
Section 10) will deal with the type of hail stage that actually occurs.

We shall first consider the attainment of saturation by adiabatic expansion of moist
air (Section 7), and in later sections (Sections 8 and 9) the saturated expansion.

7.7. Saturation of Air by Adiabatic Ascent

In Section 1 we have dealt with the saturation by isobaric cooling. We shall now
consider saturation due to adiabatic expansion by ascent in the atmosphere.
If we differentiate logarithmically the definition of U, , we have

dinU,=dlne—dlne,. (66)
During the ascent ¢/p= N, is a constant. Therefore, from Poisson’s equation
Tp ™ = const. (67)
we derive
Te *= N, "const. = const.’. (68)

That is, the partial pressure also obeys Poisson’s equation. Differentiating logarithmi-
cally:
dinT=xdIlne. (69)
Introducing this expression and Clausius-Clapeyron’s equation, we obtain for the
logarithmic variation of relative humidity:
I,

2
v

drT. 3 (70)

dInUwzldlnT—
M

Here the first term on the right hand side gives the change due to the decrease in

pressure p (and therefore in e). while the second term measures the influence of the

decrease in temperature and therefore in ¢, and is of the same form as for an isobaric

cooling (cf. Section 1). The two terms have opposite signs, so that in principle an

adiabatic expansion could lead to a decrease as well as to an increase in U,,.
Equation (70) can also be written:

du GERE | l U, {c,T—él,
el
4T T \x RT T RyT
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"_ The expression within brackets is <0 if
T <&l /c, = 1500K (72)

" a condition which always holds in the atmosphere. Therefore U, increases as T’
'~ decreases, for an adiabatic expansion.
If we represent the initial state of the ascending air on a vapor pressure diagram by

I
A

. the image point P (see Figure VII-11), the arrow starting from P indicates the adiabatic
* ascent described by Equation (69). As the air temperature T changes, the saturation
* vapor pressure will simultaneously change according to the arrow starting from S,
"anng the saturation curve, which is described by the Clausius-Clapeyron equation.
If we integrate Equation (70), we obtain

1
InEi:llnl—i——{l(l ——), (73)
Vi

u ¥ T, R,

wp

Fig. VII-11. Non-saturated adiabatic expansion on a vapor pressure-temperature diagram.

where T, U,, refer to initial conditions. For U, =1

1. T 1
—anwO:~ln—3+-!L(1 ——) (74)
*x Ty RA\T, T

. which can be solved numerically for the saturation temperature T. In the atmosphere
the ascent can always lead to saturation, i.e., T, can always be reached. On a tephi-
gram, this means that starting from the image point and rising along the dry adiabat,
we shall eventually reach the vapor line corresponding to the value r of the air
(see Figure VII-12). On the vapor pressure diagram (Figure VII-11) it means that the
adiabat starting from P will reach the saturation curve.

We shall see later that, along a dry adiabat, the temperature drops approximately
10°C for every km. We want now to make an estimation of the height at which
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In@

Fig. VI1-12. Saturation by adiabatic expansion, on a tephigram.

saturation will be attained. For that purpose we shall first inquire what is the variation
of the dew point temperature along the adiabat. This is given by the Clausius-
Clapeyron equation (cf., Figure VII-11):

0 o5, :
dT; =—2dne. (75)
Introducing Equation (69):
2 2
de;R'ri E:ﬁﬂ. (76)

2l, T el, T

Writing Ty~ T'~273K, and using finite differences, we obtain the approximate rela-
tion
AT, > 34T. (77)

That is, T, decreases approximately one sixth of the temperature drop, along an
adiabatic ascent. Figure VII-13 shows this result on the vapor pressure diagram. The
same relations are shown in Figure VII-14 on a tephigram. In this last representation, if
we consider that r remains constant during the unsaturated ascent, it is obvious that T
will slide along an equisaturated line (r = const.). ‘

Let us now consider the variations of 7 and 7, during ascent from any level z,
to the saturation level z,=z,+ Az. At the saturation level, T becomes equal to T}
and to T7,. Taking into account the lapse rate of T along an adiabat, and the derived
relation for AT,, we may write:

T —T,~104z (4z in km)
T, — T, = 3(10 4z).
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Fig. VII-13. Variation of dew-point and temperature during an adiabatic expansion, on a vapor pressure-
temperature diagram.
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Fig. VII-14. Vanation of dew-point and temperature during an adiabatic expansion, on a tephigram.

- Subtracting:
T-—T,=32 4z
z20.12(T — Ty) km = 400(T — T)ft. (78)

This relation allows an approximate estimate of the height of the condensation level
for an adiabatic ascent. This will give the base of cumuli, provided that these are
actually formed by air rising from z,.

The level at which an air mass attains saturation by adiabatic ascent is called the
lifting condensation level (usually abridged LCL), and the corresponding temperature
is the saturation temperature 7.

7.8. Reversible Saturated Adiabatic Process

Our system will be a parcel of cloud which rises, expanding adiabatically and revers-
ibly: it will be a closed system, keeping all the condensed water. Being adiabatic and
reversible, the process is isentropic,
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The same derivation and final formula will also be valid for an ice cloud, with the
appropriate substitutions (sublimation latent heat for vaporization latent heat, specific
heat capacity of ice for specific heat capacity of water, etc.).

We have already calculated the entropy expression for this system (Chapter IV,
Equation (119)). Tt is:

l
S =(myc,, + me,)In T — myRyInp, + Lﬂ-";(_—n + const. (79)

Dividing by m; and considering that the entropy must remain constant:
[
(o F b I8 — Rylap, -+ r“’—T" = const. (80)

where r, =m /mg=r, +m,/mg, py=p—e,; the subscript w indicates saturation
values.
In differential form, Equation (80) becomes:

T
(cpy + Hwew)dInT —Ry;dInp; +d (’;‘) =0. (81)

Equation (80), or (81), describes the reversible saturated adiabatic process. As we
have seen before, our system is bivariant. If 7 and p, are considered as the independent
variables, r,, can be expressed (Chapter IV, Equation (79)) as a function of e,: r,
=ge,/pg: and e, in its turn, as a function of 7, through Clausius-Clapeyron’s
integrated equation (Chapter TV, Section 8). Equation (80) gives thus a relation
between the two independent variables (whichever we choose) and determines a
curve in the plane 7T, p,; or in any usual diagram.

If in Equation (81) we neglect r, .c, as compared with ¢, and e, as compared
with p,;, we obtain the approximate formula*

Eafl
¢, ,InT — R, 1np+-{%=const. (82)

and considering that /, varies slowly with T, we obtain the approximate differential
formula

('pddInT—RddInp+I‘.d(r—;)=0, (83)

7.9. Pseudoadiabatic Process

Equations (80) and (81) of Section 8 depend upon the value of r,. This is a dilTerent
constant for each different system considered, varying with the concentration of liquid

* For high temperatures, this becomes a rough approximation. If r ., reaches a value of 0.03, A

becomes equal to about 20% of ¢,,, and it can no longer be neglected.
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“water. For a given point T, p in a diagram, the vapor saturation mixing ratio r,
' js also determined, but the liquid water mixing ratio m,/m, is an arbitrary parameter
' of the system. If we are considering rising air (expanding adiabatically), its value will
" depend on the level at which the air first became saturated. Therefore, through each
-'point of a diagram an infinite number of reversible saturated adiabats will pass,
. differing (very little) from each other by the term depending on the liquid water content.

In order to avoid this inconvenience, aerological diagrams have recourse to another

process of saturated expansion which gives uniquely defined curves. This is called the
§ pseudoadiabatic process, and it is assumed in it that all the condensed water (or ice)
f.j,'falls out of the system as soon as it is produced. The system is an open one. However,
. we may easily find the relation in which we are interested, starting from the formulas
.~ of Section 8.

We must have at any instant
m,, = 0; Fow = Tw-

We may consider the condensation and elimination of a mass dm, of water as

. occurring in two stages: (1) reversible saturated adiabatic expansion, with condensa-

tion of a mass dm,, of water, and (2) the water leaving the system. In the first stage we
may apply Equation (81), substituting r,, for r, :

(de + r.c.)d InT — Ry dIn Pa + d(r‘;{lv) =0 (84)

In the second stage, the entropy of the system will decrease by —s,, dm,,. but this
process will not affect the values of 7 and p. As for r ., it will decrease by —dm,,/my.
so that it will remain equal to r, (7). Therefore, Equation (84) describes the variation
of Tand p in a pseudoadiabatic process. If we want the integrated form, we shall have

~ to remember that r, depends now on T (which r, , did not):

oo IET ¥ cm redInT — Rylnpy + r‘"—;" = const. (85)

Obviously, in the reverse process (pseudoadiabatic saturated compression), one
has to assume that water (or ice) is being introduced from outside at the instantaneous
temperature of the system and at the necessary rate to maintain it exactly saturated.

If we now make the same approximations as in Section 8, we obtain again for
pseudoadiabatic processes Equation (83), which is usually applied when precision is
not required. Therefore, in approximate calculations no difference is made between
the two processes. In aerological diagrams, the saturated adiabats correspond as
explained to the pseudoadiabatic process. The cooling is slightly greater in pseudo-
adiabatic than in reversible expansion (for the same pressure change).
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. occurring in two stages: (1) reversible saturated adiabatic expansion, with condensa-

tion of a mass dm,, of water, and (2) the water leaving the system. In the first stage we
may apply Equation (81), substituting r,, for r, :

(de + r.c.)d InT — Ry dIn Pa + d(r‘;{lv) =0 (84)

In the second stage, the entropy of the system will decrease by —s,, dm,,. but this
process will not affect the values of 7 and p. As for r ., it will decrease by —dm,,/my.
so that it will remain equal to r, (7). Therefore, Equation (84) describes the variation
of Tand p in a pseudoadiabatic process. If we want the integrated form, we shall have

~ to remember that r, depends now on T (which r, , did not):

oo IET ¥ cm redInT — Rylnpy + r‘"—;" = const. (85)

Obviously, in the reverse process (pseudoadiabatic saturated compression), one
has to assume that water (or ice) is being introduced from outside at the instantaneous
temperature of the system and at the necessary rate to maintain it exactly saturated.

If we now make the same approximations as in Section 8, we obtain again for
pseudoadiabatic processes Equation (83), which is usually applied when precision is
not required. Therefore, in approximate calculations no difference is made between
the two processes. In aerological diagrams, the saturated adiabats correspond as
explained to the pseudoadiabatic process. The cooling is slightly greater in pseudo-
adiabatic than in reversible expansion (for the same pressure change).
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7.10. Effect of Freezing in a Cloud

We shall consider now the effect of freezing, assuming that this occurs at a given level
during the air ascent, i.e., at constant pressure. We shall also assume that we are
dealing with an adiabatic, and therefore isenthalpic process. We can still call this the
‘hail stage’, but the initial temperature can have any value between 0°C and —40°C;
it is an irreversible process.

As the water freezes, latent heat is released. Also, the air initially saturated with
respect to water at the initial temperature T, will be supersaturated with respect to the
frozen droplets: sublimation will occur, releasing an additional amount of latent heat,
until the saturation vapor pressure with respect to ice is reached, at the final tempera-
ture 7.

As the enthalpy change only depends on the initial and final states, we can calculate
it as if the total process occurred in three steps:

(1) Water freezes at constant temperature 7.

(2) Vapor condenses on the ice at constant temperature 7, until the water vapor
pressure reaches the saturation value over ice at 7.

(3) The whole system is heated from T to T'.*

This can be schematically summarized as follows:

condensed phase: water y, [ ice o i Fiee

temperature: T — & T =T Sia
water vapor pressure: | ¢ (7T) 24T el T) e(T)

The sum of the enthalpy changes for the three steps is the total change, and this must
be zero.

We may consider for convenience a system containing unit mass of dry air, an
amount r, of liquid water (rp =m,/m,) and the saturation mixing ratio of water vapor
at the initial temperature r,, (7). The three changes in enthalpy will be:

AH, = — Iy (86)
AH, = — L[r (T) — r,(T"] ‘ (87)
AH; = [c,, + ri(T)e,, + rse;](T' = T)

=¢6(T"=T) (88)

where r{(T") is the saturation mixing ratio over ice at the final temperature T', rg =
ry + r(T) — r{T")is the final mass of ice. and we have called ¢, the average specific heat
capacity of the final system.

* Tt can be imagined that the latent heat released in (1) is given to an external source, and that in (3) the
necessary heat is again received from an external source.
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We can express the mixing ratios in Equation (87) in terms of vapor pressures
-~ (formula in Chapter IV, Equation (82)):

ro(T) = (1) (89)
p

r (T = 26D (90)
p

- and use the Clausius-Clapeyron equation to express e; as a function of the initial

temperature, assuming that (7'— T') is small enough to be treated as a differential:
y) lsei(r)
e(T’) = &(T) + Py

v

AT~ T, (91)

Introducing Equations (89), (90), (91) into (87), we have

£l [e ().,
AH; = — —| e (T) — e;(T) — T=T
2 p[(T) (T) R‘,TZ( )}
2
= —r,(T) fﬁ[l - ei(T)} + ri(T)is (T' - 1). (92)
e (T) R, T
Introducing Equations (86), (88) and (92) in
AH, + AH, + AH; =10 (93)
and solving for (T'— T)= AT, we finally obtain
lere + !Srw(l - &)
AT /. (94)
c. + i
" RT

Here the saturation values are taken at 7. The term ¢, contains r;(7"), which is not
known if we are calculating 477 however r;(T")c,, <c,, (cf. Equation (88)) and r,(7)
can be used for r;(7"’). If needed, successive approximations would rapidly improve
the computation,

Formula (94) gives the increase in temperature due to the freezing of the cloud water.
For individual cloud parcels, this increase adds to the buoyancy (upward thrust due
to the difference of density with the environment: cf., Chapter 1X, Section 2) which
is important in the dynamics of such a cloud. In reality, however, freezing does not
occur suddenly at one level, but gradually over a temperature interval. If this were to
be taken into account, the problem should be integrated with that of the saturated
expansion. The distribution of freczing along the ascent should then be known or
assumed. The system would not be in equilibrium and the vapor pressure would have
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some intermediate value between those of saturation over water and saturation over
ice. The solution of the problem (curve T = f(p)) would depend on the model by which
the process might be approximated.

Especially at low temperatures, the warming accompanying freezing will depend
critically on the liquid water content of the cloud. In the limiting case, when r, and r,
become negligible,

AT="11,. (95)

p

At —30°C, if r,=10gkg™! (a high liquid water content), Equation (95) gives
AT=3.3K. This warming could be a very significant factor in cloud development.

7.11. Polytropic Expansion

Vertical motions in the atmosphere can have velocities varying within a very wide
range. Violent convective processes may entail updrafts of several tens of meters per
second. On the other extreme, some synoptic situations are associated with very slow
motions of horizontally extended layers; vertical velocities can be as small as 0.1 to
1 cm s~ '. In the latter extreme cases the expansion or compression cannot be con-
sidered as strictly adiabatic, as it has been assumed so far for vertical displacements; the
exchange of radiant energy in ‘long wave’ (i.e. in the terrestrial and atmospheric range of
wave lengths, from 4 to several tens of micrometers) with other horizontal layers, with
the ground and with outer space cannot be ignored any more without introducing
appreciable error. Such radiant exchanges produce temperature changes in the air of
the order of 1-2 K day *. For the sake of comparison, the adiabatic cooling of air rising
at 1 ems™! =~ 0.86 kmday ! would be 8.4 K day~* (as it will be seen in Chapter IX.
Section 3) and that of air rising at 0.1 cms™! = 86 mday ' would be 0.84 K day .

These non-adiabatic expansions or compressions can be approximated by the
polytropic processes described in Chapter 11, Section 8. In order to find the relation
between the values of the coefficients k and nin the formulas (61) of that section and the
conditions of these atmospheric processes, we can write the first principle in specific
quantities as

0q = c,dT — v dp, : (96)
differentiate
T = const. p”‘ —lm _ const. pk (97)

logarithmically, which gives
T
dT = k? dp (98)

and make use of the hydrostatic equation
dp = —godz (99)



THERMODYNAMIC PROCESSES IN THE ATMOSPHERE 147

(where g = gravity, dz = air ascent), which will be studied in Chapter IX, Section 2. By
eliminating d T and dp from the three equations (96), (98) and (99), it is easily found that

k=x(1—lég) (100)

~and

(101)

dg/dz is the heat absorbed by the air per unit mass and unit length of ascent. If the
information available is given in terms of rate of temperature charge 4 due solely to
- radiation exchange

_dT 1 4q

SR TP (102)
and velocity of ascent
dz
Veig (103)
we can write
dg Cph
T T T (104)

Thus, coming back to the figures mentioned before, if for instance 4 = +2K day !
- (upper and lower signs corresponding to warming and cooling, respectively) and
U =086kmday ', we obtain (assuming dry air), with ¢, =1005 Jkg 'K,
L g=981ms %

— = +234Jkg 'm !

and k = 0.219 or0.355, corresponding to the upper or the lower sign, respectively; thisis
to be compared with the adiabatic coefficient x4 = 0.286. The corresponding values of n
will be 1.28 and 1.55, respectively, to be compared with 5, = 1.40.

7.12. Vertical Mixing

We shall consider now the mixing of air masses along the vertical (by turbulent and/or
convective processes), The analysis becomes complicated in this case by the continuous
variation of p, T and r with height. We shall consider first two isolated masses 1,
and s, at the pressure levels p, and p, (with temperatures 7, and 7,), which move to
another pressure p and mix. We have then a first stage of adiabatic expansion or
compression, for which

ﬂ:n@%; H:EG)- (105)
p]_ pz
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The specific humidities ¢, and ¢, (or the mixing ratios r, and r,) are preserved in this
stage.

The second stage will be an isobaric adiabatic mixture, already considered in
Section 4; formulae (35) (or the approximate Equation (37)), (36) and (39) will apply,
as well as formulae similar to those of Equation (35) and (37) for the potential
temperature; in particular Equation (38), where 0, and 6, are the initial values, which
do not vary during the adiabatic expansion or compression. That is, the potential
temperature of the mixture is approximately given by the weighted average of the
potential temperatures of the two air masses. The third stage will consist in taking the
two air masses to their original pressure levels. The location of the auxiliary level p
used for the derivation is of course immaterial. *

Let us consider now an atmospheric layer with a thickness 4p=p,—p,. and let us
suppose that it mixes vertically. We can imagine that the process is performed by
bringing the whole layer to the same level p, mixing it isobarically and redistributing
it in the original interval Ap. The mixture will consist of air with a potential tempera-
ture 6 equal to the weighted average for the whole layer. The vertical redistribution
will preserve the value of 0, since it consists of adiabatic expansions or compressions.
Therefore, when the layer is thoroughly mixed, # will be constant with height.

The mass per unit area of an infinitesimal layer dz will be dm =g dz, where g is the
density at the height of the layer. We shall see in Chapter VIII, Section 2 that (assuming
hydrostatic equilibrium)

1
S (106)

where g is the acceleration of gravity and —dp the variation of p in dz. Therefore

m Z P2
jﬂdm Jﬂgdz Jﬂdp
620 :0 :___Dl.—' (10-}!]

m ; P1— Pz
j‘gdz
0

Similar expressions would give the final values of ¢ and r. The iemperature T will
have a distribution along p given by the adiabat for 0, i.e.,

T= 9($)H. (108)

* We might also have assumed that both masses move 10 p = 1000 mb, in which case T; =, and
T:=10,.
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This case is illustrated by Figure VII-15 on a tephigram, where the solid line shows
the initial temperature distribution, the dashed line is the final adiabat 8,* and the
dotted line (vapor line corresponding to the final uniform value of 7) shows that the
final distribution does not reach the saturation level.

‘ 8

N\

o

Fig. VII-15. Vertical mixing without condensation, on a tephigram.

If the vapor line 7 intersects the adiabat #, from that level upwards condensation
will occur and the final temperature distribution will follow the saturated adiabat.
The intersection level is called the mixing condensation level (MCL). This case is
illustrated by Figure VII-16.

saturated
udmbu’[\ T

P,

Fig. VII-16. Mixing condensation level, on a tephigram.

7.13. Pseudo- or Adiabatic Equivalent and Wet-Bulb Temperatures

Formula (29) is not convenient for a determination of T}, and T, on aerological
diagrams. But another two parameters, closely related to the above, may be defined,
that can be easily found on the diagrams.

Let P be the image point of the air, with a mixing ratio r (see Figure VII-17). Let us

* Compensation of areas is not strictly applicable here, but it will give a good approximation if the
thickness of the layer is not too large.
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assume that the air expands adiabatically until it reaches saturation; we have seen in
Section 7 that this is always possible. This will happen at the intersection of the dry
adiabat with the vapor line r. This is the characteristic point of the air, and has been
designated as P, on the diagram. Its temperature is the saturation temperature 7.
A saturated adiabat must also pass through that point; if we now follow it towards
increasing values of the pressure, we attain the point P, at the original pressure p.
The temperature of P, is called the adiabatic wet-bulb temperature or the pseudo-wet-

Fig. VII-17. Wet-bulb and equivalent temperatures.

bulb temperature. In order to be able to follow the curve PP, , we must imagine that
we are evaporaling water into the air. so as to keep it saturated at increasing tempera-
tures. According to the definition of these curves on the diagrams (pseudoadiabatic
process, Section 9), we must consider that liquid water is being introduced in the pre-
cisely necessary amounts to maintain saturation, at the varying temperature of the air.
and evaporated into it. If we compare this process with the experimental definition of
T, (through the wet-bulb psychrometer) we find that while in the latter case all the added
water was initially at the temperature 7, (and its heat capacity was finally neglected
in the analytical definition of T,,), in the process now under consideration it was
initially at varying temperatures between T, and T, and after evaporation it had to be
warmed to 7, . subtracting heat from the air. For this reason T,,, is smaller than 7.
but only by a small difference, usually not exceeding 0.5°C.

Let us assume now that again we expand the air. starting from P. But this time we
continue expanding after P.. The air will then follow the saturated adiabat, the water
vapor will condense, and we assume that it falls out of the system during the process.
If we continue this process indefinitely, the curve will tend asymptotically to a dry
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adiabat, as the water vapor content becomes negligible (this isindicated in Figure VII-17
by o0). Along this stage, water vapor cools together with the air before condensing
J_-and falling out al the variable temperature of condensation. Once all the vapor has
~ thus been eliminated, we compress again the air to the original pressure p. In this last
| stage, the air is dry and will follow a dry adiabat, reaching the final tlemperature 7,
. which we call the adiabatic equivalent or pseudo-equivalent temperature. As for T,_.
. the change (not the process) undergone by the dry air component of the system is
~ isobaric. But while for T, the condensed water remains at inlermediate lemperatures
- between T and T, (and its heat capacity is finally disregarded). in the process now
- under consideration it remains at varying temperatures below T thus, T, > T,..
. The difference is in this case larger than for the wet-bulb temperatures, and cannot be
. neglected in general.

‘ If in the case of the pseudo-wet-bulb temperature we extend the saturated adiabat
" to the 1000 mb isobar, the intersection determines, by definition, the pseudo-wet-bulb
potential temperature 0, . Similarly, by extending the dry adiabat from T, to the
" intersection with the 1000 mb isobar, we determine the pseudo-equivalent potential
temperature 0, .

7.14. Summary of Temperature and Humidity Parameters. Conservative Properties

We summarize now the different temperatures that have been defined, with reference
to the sections where they were introduced.
T'=temperature
Dry temperatures
T, = virtual temperature (Chapter IV, Section 11).
T.=T,.,=(isobaric) equivalent temperature (Section 3).
T,. = adiabatic equivalent, or pseudo-equivalent, temperature (Section 13).
Saturation temperatures
! T, = dew point temperature (Section 1).
' T; = frost point temperature (Section 1).
T, = T,,= (isobaric) wet-bulb temperature (Section 3).
T, = adiabatic wet-bulb, or pseudo-wet-bulb, temperature (Section 13).
T, = saturation temperature (Section 7).
Potential temperatures
6 = potential temperature (Chapter II, Section 7).
#, = virtual potential temperature (Chapter IV, Section 13).

s

E 6. = 0,. = (isobaric) equivalent potential temperature. *
0,. = adiabatic equivalent, or pseudo-equivalent, potential temperature
L (Section 13).

'; 0, = 0, = (isobaric) wet-bulb potential temperature. *
f 0,, = adiabatic wet-bulb, or pseudo-wet-bulb, potential temperature
(Section 13).
* Defined in a similar way to the corresponding pseudo-potential temperature (see Figure V11-18).
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Fig. VII-18. Summary of temperature-humidity parameters.

Among the non-potential temperatures we have the following inequality relations:
T;{Td< an< ﬂ‘l‘{T{j—;’{j—‘ic{ﬂE'

Figure VII-18 gives a summary of these parameters, as they are determined on a
tephigram.

The reason why all these parameters are defined lies in their conservative properties
regarding certain meteorological processes. Thus, for instance, an air mass becoming
warmer or cooler, isobarically, maintains the same value of its dew point. An air
mass rising or descending adiabatically, without condensation or evaporation, keeps
constant its potential temperature; if evaporation or condensation takes place, ¢
varies but 0, and 8, preserve their values. A cool, moist, air mass that rises along the
slopes of a mountain range, drying by precipitation, may eventually descend along the
slopes on the lee side, arriving as a dry, hot air mass (Féhn); the air mass may be
recognized to be the same as before if its potential temperatures 0,,, or 0, remain the
same.

These parameters may thus be used to identify air masses undergoing a series of
transformations,

Table VII-1 summarizes the conservative properties of several temperature and
humidity parameters, with respect to the main processes referred to above.
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TABLE VII-1

Conservative properties of several parameters, C = conservative; NC = non-conservative

Property Process:
Isobaric Isobaric Non-saturated Saturated
warming or vaporization or  adiabatic adiabatic
cooling (without condensation expansion expansion

condensation or
vaporization)

" Uw NC NC NC C
eor Ty C NC NC NC
gorr C NC C NC
Tywor Ty, NC NC NC
0 NC NC C NC
O, O G, NC C C C
PROBLEMS
1. An air mass has a temperature of 20°C at 1000 mb pressure, with a mixing ratio

of 10 g kg™ !. After a certain time, the same mass, without mixing with the environ-
ment has acquired a temperature of 10°C and a pressure of 750 mb. Knowing that
the dew-point is initially 14.0°C, calculate analytically the initial and final values
of the vapor pressure ¢ and relative humidity U,, and the final dew-point
temperature 7, . Do not use tables of saturated vapor pressures.
During the formation of a radiation fog, 1 cal g~ is lost after saturation started,
at 10°C. The pressure is 1000 mb. What is the final temperature? What was the
decrease in vapor pressure, and what is the concentration of the fog, in grams of
liquid water per cubic meter?

Make an approximate calculation, treating the differences as differentials,
and using the approximate value 12 mb for the saturation vapor pressure.

. Theisobaricequivalent temperature is defined as the temperature that the humid air

would attain if all its water vapor were condensed out at constant pressure, and the
latent heat released used to warm the air. Using the expression for the enthalpy of
Chapter IV, Equation (104), show that a more accurate expression of the isobaric
equivalent temperature than Equation (27) is given by the following formula

LT —c
in 2l _ o~ Cu ln(l +cir)
I(T) Cp. o

An air parcel, initially at 10°C and with a water vapor pressure of 3.5 mb, under-
goes an isobaric, adiabatic wet-bulb process to saturation. Derive in approximate
form (assuming the heat capacity of the water substance is negligible) an expression
giving the slope of the line representing this process on a e — T (vapor pressure —
temperature) diagram. Draw this line on such a diagram for a total pressure of
1000 mb, and obtain the approximate values of the wet-bulb temperature and of
the equivalent temperature.
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5.

10.

11.

12.
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Two equal masses of air, both at 1000 mb, mix thoroughly. Their initial tempera-
tures and mixing ratios are: 7,=23.8°C, r,=163gkg™ ", T,=—64°C, r,=
=1.3 gkg™'. Describe the final result, expressing: the temperature, the mixing
ratio, if air is saturated or not and, if so, the liquid water content in g m 3. Make
all calculations analytically; if necessary, use a table of saturated vapor pressures or
of saturation mixing ratios.

. Twoequal massesofair,oneat0°C and the otherat 25°C, both saturated but without

any liquid water, mix thoroughly. The pressure is 1000mb. Calculate the liquid water
content of the resulting fog, in gm 2. Use tables as needed, but no diagrams.

. Onagiven occasion,convectiveactivity becomes visualized by isolated cumuliwhose

bases are at 2000 m above the ground. Near the ground, the temperature and dew
point have been constant for the last hour, with values 30°C and 13.3 °C, respectively.
Would you say that the cumuli might have been formed by air rising from near the
ground? Explain.

. Complete the tephigram of Problem VI-1 by drawing three saturated adiabats:

0,, = 250, 270 and 290K.

. A parcel of cloud air rises, expanding adiabatically, from 1000 mb, 20 °C, until it

reaches a temperature of —40°C. What is the final pressure? Make the following

approximations:

(a) Neglect the remaining mixing ratio of water vapor at —40°C,

(b) Neglect the heat capacity of water (both liquid and vapor),

(c) Neglect the partial pressure of water vapor against the total pressure, and

(d) Assume a constant value of the latent heat of vaporization (use an average value
between —40°C and +20°C).

Use tables as needed. Do not use a tephigram. The calculation must be made

analytically.

Consider a mass of air which is aloft above the tropics, saturated with water

vapor with respect to ice, at 230 mb and —40 °C. Assume that it rises adiabatically

until reaching the tropopause at 120 mb. Water vapor condenses to ice. What is the

temperature (°C), within 1 ° of approximation, at the tropopause?

The heat capacity of ice can be neglected; the water vapor pressure is negligible
as compared with that of dry air; the water vapor at the tropopause can be ne-
glected altogether (i.e., set = 0). You can use the Table of Constants in the book.
Saturated air rises adiabatically, water vapor condensing into water droplets while
the air remains saturated. Make a simple sketch on a vapor pressure diagram (e, T)
where you show the initial and final points, the path representing the process, and a
second path to the same final point, consisting in
(a) adiabatic expansion without condensation, followed by
(b) condensation at constant pressure.

(a) Deriveaformulafor the(specific) work ofexpansion associated with a polytropic
ascent of air, as a function of its temperature variation 4T and the polytropic
exponent n.
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(b) Calculate that work,inJkg™',for 4T = —10K and n = 1.2. How much is the
corresponding absorbed heat, per kg?

Derive the expression for the final temperature distribution T = f(p) acquired by an

isothermal layer of temperature T, contained between theisobars p, and p,, whenitis

thoroughly mixed vertically. Assume that there is no condensation.

14. With the data of Problem VI-4, find on a tephigram the adiabatic wet-bulb

15.

16.

17.

18.

temperature T,,, the potential adiabatic wet-bulb temperature 6, , and the saturation

temperature T, and pressure p, (temperature and pressure at which condensation

starts, when expanded adiabatically). Give the temperatures in °C.

(a) Derive an expression for 0, as a function of T and p(r,, e,, or T, can be left as
implicit functions of T, p). Use the usuval approximate formula for saturated
adiabats.

(b) What is the value of 8,, for saturated air at 800 mb, 0 °C, as obtained with the
derived expression?

With the data of Problem IV-7, determine graphically, on a tephigram, r,,, 6.0, p.. T.,

T... 6., and T;. Compute T;, and T,,.

A Fohn blowing on the ground at 1000 mb has a temperature of 38 °C and a mixing

ratioofdgkg ™ '.Could thisair bethesameasthatat the 1000mblevel on the windward

side of the mountains, with a temperature of 21.5° and a mixing ratio of 10 g kg = '?

Could it be the same as that at the 800 mb level with 5°C and 5 g kg™ '? Use the

tephigram, and give the reasons for your answer.

A mass ofair undergoes vertical displacements, during which precipitation fallsout. If

itcan beassumed that noappreciable heat has been exchanged with the environment,

what invariant parameter could be used to identify the mass through its trans-
formations? Whatinvariant parameter could be useful to identify a non-precipitating
air mass moving horizontally over land and changing its temperature?



