CHAPTER IX

VERTICAL STABILITY

In the previous chapter we have considered the atmosphere in hydrostatic equilibrium.
It is obvious that this type of equilibrium does not imply a thermodynamic equilib-
rium; for instance, the vertical gradient of temperature will imply vertical heat
conduction. In the real atmosphere heat will also be lost or gained by radiative
processes. If vertical equilibrium is not prevalent, we should consider a third type of
heat transport process: turbulent conduction. Conduction by molecular diffusion is
a very slow process, negligible for all practical purposes, so that it need not concern us.
Conduction by radiation is more important by several orders of magnitude, and it is
a legitimate question to consider if radiative processes play a major role in deter-
mining the vertical distribution of temperature. Calculations for an atmospheric
column which would receive radiative energy through the base, while losing the same
amount from the top (admittedly a gross over-simplification of actual radiative
processes), lead to a steady distribution such as indicated by the dashed curve of
Figure IX-1. On the other hand, if we assume, in addition, a thorough vertical
mixing, up to a level indicated by a discontinuity (tropopause), a distribution such as
that of the full curve would be obtained. The real atmospheric stratifications are
reasonably similar to this curve, especially for average conditions in temperate and
tropical latitudes. The vertical turbulent transport of heat is thus a major factor
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Fig. IX-1. Curve of radiative equilibrium and curve of convective lapse rates resulting from eddy diffusion

(according to Emden).
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determining the temperature distribution. In fact, when this mechanism is active, it
may again be one or more orders of magnitude more efficient than the radiative transfer
in determining local rates of change of temperature.

Apart from these considerations on energy transport, the vertical motions in the
atmosphere are associated with weather disturbances and are therefore of primary
importance to the meteorologist. Horizontal air motions can also not be neglected,
and are particularly important on the time scale of day-to-day temperature changes.

In this chapter we shall investigate the conditions of vertical stability and instability
in the atmosphere, first by assuming virtual infinitesimal displacements from equili-
rium at one point, then by looking into the consequences that finite vertical displace-
ments of isolated air masses may have, and finally by considering vertical movements
of extensive layers. We shall also consider the internal and potential energies of air
columns, as well as the consequences of radiative processes.

In order to avoid confusion whenever this is liable to occur, we shall use different
symbols for geometric and for process derivatives and differentials. In the first case
we shall substitute the symbol d for d (e.g.: writing dz, 67/d¢, etc.), while we shall
leave the usual d for the latter variations (e.g.: dz, d7/d¢, etc.).

9.1. The Parcel Method

We shall now investigate the stability conditions regarding virtual vertical displace-
ments of an atmospheric parcel in an environment which will be assumed to be in
hydrostatic equilibrium.

The parcel is initially a part of the atmosphere, not different from any other at the
same level. But it becomes an individualized portion as soon as it is assumed to start
a displacement, while the environment remains at rest.

We shall denote by reference level the initial level of the parcel. The variables of the
parcel will be distinguished by a prime (e.g., 7’) from those of the environment (7).

A number of simplifying assumptions are adopted in this method. 1t is supposed
that:

(I) the parcel maintains its individuality during its movement, without mixing
with the surrounding air,

(2) the movement of the parcel does not disturb the environment,

(3) the process is adiabatic, and

(4) at every instant the pressures of the parcel and of the environment for a given
level are equal.

The first hypothesis, while reasonable when we consider infinitesimal virtual
displacements, becomes quite unrealistic for finite displacements, and for this reason
the data obtained in these cases are only semi-quantitative and must be corrected by
empirical factors. The second assumption obviously cannot hold rigorously, since the
ascent of an air mass must be compensated by the descent of other parts of the atmo-
sphere; the approximation is good for isolated convection (when the disturbance of the
environment is negligible) (cf. Section 8). The third hypothesis is reasonable, because
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the heat conduction processes in the atmosphere (turbulent diffusion, radiation,
molecular conduction) are in general slow compared to convective movements,
Pressure quickly attains equilibrium, and therefore the last hypothesis is also good,
provided the motions are not so violent that hydrodynamic perturbations become
appreciable.

Taking into account these considerations, it is clear that, although the method
leads to correct criteria for vertical equilibrium when only infinitesimal virtual dis-
placements are considered (with the restriction mentioned with respect to the second
assumption), it will lead to quantitative values in considerable error when finite
displacements are considered. Even in these cases, however, it sheds considerable light
on significant aspects of vertical instability and gives correct qualitative conclusions.

9.2. Stability Criteria

Let us consider a parcel displaced from its initial position (reference level), and it
environment at its new level. As the environment is in equilibrium, Chapter VIII,
Equation (19) must hold:

op +go=0. (0
0z
The parcel, on the other hand, in general will not be in equilibrium: it will be subject
to a force per unit mass equal to the resultant of the forces of gravity and of the pressure
gradient. The first one is —g, where the sign indicates that it points downwards. To
calculate the second one, we consider an infinitesimal layer of thickness éz from a
column of unit cross section (see Figure IX-2). The force —(dp/dz)éz = —(dp/dz)V'
acts upon it, where V' is the volume of the layer. Dividing by V', we have the force
per unit volume —dp/dz (where p is the same as in Equation (1), according to the
fourth assumption). The resultant of both forces will produce an acceleration 7 (the
dots meaning differentiation with respect to time), so that, per unit volume, we shall
have the equation
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Fig. IX-2. A parcel, considered as a layer of an atmospheric column,
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Subtracting Equation (2) from (1):
g=g2-¢ (3)

which, taking into account the gas law, and the definition of virtual temperature, can
also be written

T ) - ; @)

This expression gives thus the force per unit mass acting on the parcel, due to both
gravity and the pressure gradient. It is frequently called the buoyancy on the parcel,
and written with the symbol B. In what follows we shall use the expression with virtual
temperatures. We also have

T,=T,—706¢; T,=T, —y.d¢’ (5)

where the subscript 0 refers to the reference level. Obviously, T, =T, and d¢=
=d¢’ =g dz. Therefore:

nvao_'?vgdZ; T\."ZTVO_?:Q d: (6}
and

T, - T,=@,—)gdz. (7
Substituting into Equation (4):

f=g—2(?v—*;:)dz. (8)

T
This formula shows that, if y,<y,, the parcel will acquire an acceleration Z after

the virtual displacement of the same sign as the displacement dz; it will tend to move
away from the reference level, with increasing acceleration: this is the case of instability
(positive buoyancy). If y/>y,, # and z will have opposite signs and the parcel will tend
to return to its original position (negative buoyancy): this is the case of stability. If
¥+=7, the equilibrium is indifferent, and after being displaced, the parcel will remain
in its new position. These stability conditions are summarized in the relation:

Yo Z Vo (9)

> corresponds to instability

where = corresponds to indifference (neutral or zero stability)

< corresponds to stability.

The aerological sounding gives the variables T, p, U, for each height; with these
data y, can be calculated, and at the same time virtual displacements can be imagined
and the resulting process lapse rate can be calculated. The comparison is extremely
simple with a diagram, and permits the use of the criterion (9), as we shall see in
Section 5.
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9.3. Lapse Rates for Atmospheric Ascents

Before proceeding further with the stability criteria, we shall consider now the expres-
sions for the thermal gradient for a dry adiabatic ascent y,, moist (air) adiabatic
ascent y,,, polytropic ascent y, and saturated adiabatic ascent y,,. As the ascent of the
parcel is adiabatic, the parcel will undergo one of these processes, according to the
humidity conditions.

For an adiabatic process without condensation or evaporation:

6g=0=dh—vdp=c,dT — vdp (10)

and assuming hydrostatic equilibrium (i.e., assuming that the vertical motion is slow
enough to consider the process as quasistatic or reversible), we use Chapter VIII,
Equation (21):

¢, dT +d¢p =0

1

Cp

where ¢, = ¢, (1 + 0.87r) (see Chapter IV, Equation (87)).

P = “pa
In the particular case when the air is dry, r=0 and

1 -1

1
Ja=—=—kgK

1005
=0.00976 K gpm "'

cPd

(12)
=976 K gpkm™!

=0.00320 K gpft ' .

This process lapse rate is equal to the geometric lapse rate of a dry adiabatic atmo-
sphere (cf. Chapter VIII, Section 7).
The lapse rate for moist air will differ only slightly from y,, and can be expressed:

Td
g S A L o (13)
N TT T T
In the case of a polytropic ascent, as considered in Chapter VII, Section 11, ¢ is not
zero in (10), and (11) is no longer valid. By following the same procedure as above, we
derive in that case for the polytropic lapse rate 7,:

" zL(l_fi)=_l__L (14)

where 4 and U have the same meanings as before. The second term becomes important

only for extremely low rates of ascent (U < 1 cms™').
The derivation of the lapse rate for saturated conditions is more laborious, and the

result depends slightly on whether we assume a saturated reversible expansion (Chapter
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VII, Section 8) or a pseudoadiabatic one(Chapter VIL, Section 9). We shall begin with the
firstcase. Thestarting pointmay beeither Chapter VII, Equation(81), whichexpresses the
condition ds = 0, or again

dg =dh —vdp=0.

Both are equivalent, for the process is assumed to be reversible, and therefore 0= T ds.
We shall have
dT 1dT _ p dT

= =—— (15)
d¢ wvdp RT dp

Yw =

where R = Ry(1 + 0.61r,). TheexpressionfordT/dptobeintroduced hereisfound from
theequation describing the process. We write Chapter VII, Equation(81),developing the
differentials:

Cpy T O ryl

1
—F—ﬂdT—&dpdﬂk—'drw%—r—de,-— zvdT:(}. (16)
T Py i i i T
We use now the substitutions
p =pste, (17)
dp; = dp — de, (18)
ry=— (19)
P— €y
ede, ge, dp e, de,,
dr, = — = 2
p—ey (D=2 {(p—ie)
&4 r“’dew—L_zdPs (20)
P— €&y {p T ew)

we divide Equation (16) by dp and we further substitute

de, _de, dT (21)
dp dT dp

di, dl, dT (22)
dp dT dp

We then solve for d7/dp, obtaining finally:
R, el.e,
e
2l p—es T(p—e) e

4p M_ﬁJrr_W%_,_dew[ Ry +L-('€+f'w):|
P

T T> TdT dT|lp—e, T(p—e.)
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If we introduce this expression into expression (15), take into account the relation
between R and Ry, Equations (12), (19), and the Kirchhoff and Clausius-Clapeyron
equations:

= Cp, = Cw (24)

d&_ Le. e,
dF BRI R

(25)

we can obtain the expression

+ =ik
P— e, RT 26)

cp.,rw + cw(r:,w = rw) + :vlrw(g + rw).
CP-: chRde

Tw = T4
1+

This formula gives the lapse rate for the reversible saturated adiabatic expansion, and
depends slightly on the proportion of liquid water referred to the unit mass of dry
air (r, ,—r,). The formula for the pseudoadiabatic process will be obtained from
Equation (26) by setting (r, ,—7,)=0, i.e., by suppressing in the denominator the
term with ¢, .

Equation (26) can be simplified by several approximations. In the numerator,
0.61 </,/RT, so that the term 0.61 can be neglected. The ratio p/(p—e,) can differ
by a few per cent from unity; it can be set equal to unity within that approximation.
The second term in the denominator can also amount to a few per cent, and if we
neglect it, the error will be partly compensated by the previous approximation. Finally
ry, <e¢ so that r,, can also be neglected in the last term of the denominator. The result
of these simplifications is the formula

1 f\’rw
RT =
}’w%?d—r- (27)
f ot e
CuRaT

And writing r,~¢e,/p, R=R,,

el.e,

R,Tp

g%,
cdedT:’p

I +

Pw = T4 (28)

1+

This approximate expression does not distinguish between the reversible and the
pseudoadiabatic process. Tt might have been derived directly from the approximate
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expression Chapter VII, Equation (83) with ¢, = ¢, by following a similar procedure
to that leading to expression (26), introducing the same approximations as for the
derivation of Equation (28) and making the additional simplification of neglecting
unity against &/ /R T~ 20.

We can illustrate the errors involved in these approximations by giving a numerical
example. Let us assume that 7=17"C, p=1000 mb; thus e,=19.4 mb, r,=0.0123.
Assuming that r, ,=0.0163 (corresponding to a large liquid water content of 4 g kg !
of dry air), Equation (26) gives

(Yw)rey = 4.40 K gpkm ™'

Setting r,_,, =r,, (no liquid water), Equation (26) gives for the pseudoadiabatic process:
(7w)ps = 4.42 K gpkm ™!

i.e., a value only 0.5% higher. The approximate formula (28) gives
7w = 4.53 K gpkm .

With numerical values of the constants, Equation (28) reads

1 4 Pl
Pw =9.76 Rl 106 . sz K gpkm ™', (29)
1+839x10%e,/Tp

Equation (26), or the approximate relations (28) or (29), permits the computation
of 9, as a function of T and p. The second term in the numerator of Equation (28)
is always smaller than the second term in the denominator (because e<l/c, T=
=2500/T in the atmosphere), and therefore y, <7y,. The largest differences are found
for high values of 7 (and therefore high values of ¢,), when 7, decreases to near
3 K gpkm™'. For lower T, e, decreases rapidly and, unless p is also very low, the
second terms in the numerator and denominator become negligible, so that y,, tends
to the value y,=9.76 K gpkm™'. In an aerological diagram this means that for
decreasing temperatures the saturated adiabats tend to coincide with dry adiabats of
the same pseudo-equivalent potential temperature 0,,.

The previous derivations refer to water clouds. The same formulas hold for ice
clouds, provided we make the corresponding substitutions: I, e; and r; for /,, e,
and r,,.

9.4. The Lapse Rates of the Parcel and of the Environment

Let us go back now to the stability criteria (9) and consider the virtual temperature
lapse rates y, and y,.

According to the initial assumptions, the virtual processes undergone by the parcel
must be adiabatic. If the parcel is not saturated, as there is no mixing with the sur-
roundings, the mixing ratio r, will be a constant, and the process is a moist adiabatic
expansion (or compression). By differentiating

T, =1 +0.61r,)T" (30)
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with respect to ¢ and changing sign, we obtain:
'P: = (1 +0-61f0}}'m I(l +{}.6] roj{] _OSTTD)?dz(l _0.261-0)}’{! (31_)

where 7., is the lapse rate for the moist adiabat and y, that for the dry adiabat.
The term 0.26 r, 1s small compared with unity and therefore we may neglect it as a
first approximation. Thus

v. 27y (unsaturated parcel). (32)

If on the other hand the parcel is saturated, its mixing ratio r,, must decrease during
the ascent. By proceeding as before, we have:

T =(1 +0.61 )T (33)

2= (1 +0.617)y, — 0.61 T T (34)
d¢

where y,, is the saturated adiabatic lapse rate.

We remark now that dr, /d¢ <0, 7, > 7, and as r, and its derivative decrease with
ascent, y, becomes closer to y,,. For the lower troposphere the last term may amount
to as much as 10% of y,; if we neglect this term as a first approximation, as well as
0.61 r,, against unity,

Ve X 7w (saturated parcel). (35)

Therefore, we identify the lapse rate of the parcel approximately with y,4 or 7.,
according to whether it is unsaturated or saturated. In Section 3 we have derived the
values for these two quantities.

We may now consider the lapse rate of the environment in a similar way, but
remembering that here we are dealing with a geometric derivative rather than with a
physical process. We shall have

T,=(1+061r)T (36)

=0 +061r)y—061T 0—; 37
0 :

If we take into account the relation (9), the last term indicates that according to
whether dr/3¢ 20, the humidity distribution with height will increase or decrease the
vertical stability. In certain conditions this term may become quite appreciable. Let us
consider an example. We assume y =0, for simplicity. Now we ask what distribution
or r may determine a value y,=//c,, =7, for the lapse rate. It will be:

- M~ _ 6x105gpm ™.
ob 06T

This condition would be satisfied, for instance, if the mixing ratio decreased by
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8.6 x 1077 along 150 gpm. This variation could be present in a layer whose base was
saturated at 10°C and 900 mb and whose top was dry. Such vertical humidity gradients
could arise in the case of dry inversion layers above cloud strata.

We may also define a potential temperature lapse rate and derive its value for an
unsaturated atmosphere as a function of the lapse rate y, . If we differentiate logarithmi-
cally the definition of #,:

GV:T}(@)- (p in mb), (38)
P

we obtain

186, 10T, 3 0p

0,5¢ T,o¢ p oo

(39)

If we now introduce Chapter VIII, Equation (21), the definition of 24, the gaslaw and the
value of y4, we obtain

of G}
dp T,

which gives, except for the sign, the lapse rate of {,. This is therefore proportional to
the difference between y, and the adiabatic lapse rate. If y,=y,, we have #,=const.
(adiabatic atmosphere).

9.5. Stability Criteria for Adiabatic Processes

Within the approximations made in the previous paragraph, we may now write the
criteria (9) in the following form:

7 =74 unsaturated parcel, (3D
7. = VW Saturated parcel, (#2)

where, as before, the sign > corresponds to instability, the sign = to indifference,
and the sign < to stability.

We have here relations between thermal gradients, that is between derivatives of
the temperature with respect to ¢. The geopotential is proportional to the height z.
and the variables —p, —In p or —p* increase monotonically with z. Therefore, the
relative values of the derivatives T with respect to these variables will follow the same
order as the lapse rates 7. In the diagrams (tephigram, emagram, Stiive) where T is
the abscissa, the curves giving the variation of T will appear more inclined backwards
the higher the value of y. For any of these representations we may thus visualize the
conditions (41) and (42) by means of the diagram shown in Figure IX-3.

The procedure consists in observing, for a point P, of the state curve, what relation
the slope of the curve bears to the slopes of the dry and saturated adiabats. According
to the slope, the curve will fall within one of the stability regions; thus



186 ATMOSPHERIC THERMODYNAMICS

saturated
adiabat

/

f

Isotherm

conditional
stability o
dry absolute stability
adiobat
absolute
instability Y=Y 22l Fol0 Nereon
(v < 0)
isobar E’;.

Fig IX-3. Lapse-rate regions of stability, on a diagram.

the zone of absolute instability corresponds to Yo > Yy

the zone of conditional instability corresponds to  y,, <y, <74

the zone of absolute stability corresponds to Yo < Yoo

The word ‘absolute’ indicates that the stability or instability condition holds
independently of the air saturation. The designation of “conditional instability”
means that, if the air is saturated, there will be instability (y, =y, <y,), and in the
opposite case, there will be stability (y! = 74> 7).

Let us consider now an unsaturated parcel in the case of instability. We shall have
7+>74, and in a diagram the state curve (y,) and the process curves (y,) will appear
as in Figure IX-4, where 6, @, 8", 0" indicate dry adiabats of decreasing potential
temperatures. It is obvious that for rising ¢. the state curve cuts dry adiabats of

Fig. IX-4. Potential temperature decrease with height for a superadiabatic lapse rate.
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decreasing potential temperature 0; that is, 06,/d¢ <0. If we had started with the
stability case, we would have arrived at the opposite result. On the other hand, the
argument may be applied in a similar way to the case of a saturated parcel, if instead of
y4 we consider the lapse rate y,,, and we substitute the potential wet bulb temperature
or the potential equivalent temperature 6,, for 6, these temperatures being the

7}

aw

layer with
latent instability

referonce level

Fig. IX-5. Latent instability.
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invariants characteristic of the saturated adiabats. We may therefore express the
stability conditions in the following alternative way:

5‘{; 0 unsaturated parcel (43)
a

% <0 or ?nﬁ“i S0 saturated parcel (44)
3 olo]

where now the sign < corresponds to instability, the sign = to indifference, and the
sign > to stability. Obviously the same conditions can be written with the z derivatives,
instead of using the geopotential.

The relation (43) could also have been derived by introducing Equation (41) in (40).

9.6. Conditional Instability

In Section 5 we have denoted by conditional instability the case j, <y, <y All
arguments so far have been based on infinitesimal virtual displacements. They have
been used therefore to analyze the stability conditions at a certain point or, as we are
studying an atmosphere where all properties are constant on equipotential surfaces,
at a given level.

We shall now study the stability conditions in a conditionally unstable layer, such as
that extending from the surface (P,) to the point R of the state curve in Figure IX-5
(representing a tephigram). All the points of the state curve within that layer obey the
conditional instability criterion. But we shall now discuss what happens when parcels
coming from different levels rise along the vertical, in finite displacements.

The temperature distribution of the atmosphere is represented by the curve ¢
(sounding). The curves ¢}, ¢} and ¢} represent the processes undergone by parcels
coming from the reference levels P;, P; and P;, respectively.

When a parcel rises vertically in the atmosphere, a certain amount of work is
performed by or against the buoyancy forces according to whether the process curve
lies at the right or at the left of the state curve. We shall now show that this work is
proportional to the area enclosed between the two curves and the isobars defining the
initial and final levels, in any area-preserving diagram. :

Let us first consider the process on an emagram (Figure IX-6). The work done by

the buoyant force on the parcel, per unit mass, will be
b

w =J #dz, (45)

and taking into account Equation (4), (Chapter VIII, Equation (21)) and the gas law.
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b

v —v

b
w=gJ = dz = —j{v’—u)dp

£l

& Rdj(ﬁ — T)d(—Inp)

= Rd (}:;m = Ecm) ] (46)

where X’ and X, are the areas defined by the two isobars, the vertical axis, and the
curve ¢' or ¢, respectively. The difference is the area shaded in the figure. This is a
closed area which might be considered as the representation of a cycle. We have seen
in Chapter VI that the same cycle will define a proportional area in any other area-
preserving diagram, such as, for instance, the tephigram.

|
= lnp

(z;m/— > i)

T

Fig. IX-6. Work performed on a parcel by buoyancy.

Let us go back now to the process that we are considering, The work received per
unit mass of the parcel will be transformed into kinetic energy:

m:sz;zj—Adz= s di=1(32 — 2D, (47)

=
B e

where 127 is the kinetic energy of the unit mass. If ¢’ is to the right of ¢, as in the figure,
w is positive: work is done on the parcel by the external forces of gravity and pressure.
and the parcel accelerates. If ¢’ is to the left of ¢, wis negative and the parcel decelerates; in
order to rise, the parcel must be provided with an energy equal to the negative area that it
determines on the diagram along the ascent.

In Figure IX-5, in order for the parcel to follow the path c,, work proportional
to the area 4 _ must be performed against the negative buoyant force (for instance, the
necessary energy could come from a forced orographic ascent). The level at which it
reaches saturation (point P) is called the /lifting condensation level (LCL).

When the parcel surpasses the level at which the process curve crosses the state
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curve, the buoyant force performs a work proportional to the area A, up to the
isobar reached. Convection will thus continue freely until ¢ crosses again c, and the
parcel decelerates. The level of the first crossing is called the level of free convection
(LFC). The total area 4, measures the latent instability for a parcel at the reference
level P,.

One can proceed similarly with parcels from other levels. When the level of P,
is reached, A , vanishes: this is the upper limit of the layer for which there is latent
instability. For instance, ¢} does not show any latent instability.

It may be noticed that the instability is-greater for higher 7 and r. When r increases,
the segment P, P, becomes shorter, A_ decreases and A, increases. Regarding the
temperature, if we assume that after the sounding ¢, the ground is warmed up by
radiation (insolation), a steeper lapse rate y, will appear in the lowest layer; when
it exceeds the dry adiabatic lapse y4, the layer becomes unstable and a vertical mixing
process starts working, which results in a dry adiabatic lapse rate for that layer
(cf. Chapter VII, Section 12). As the warming continues, an increasing depth of the
lowest part of the sounding becomes substituted by dry adiabats of increasing potential
temperature. Eventually, the top of the stirred layer may reach saturation, that is,
the dry adiabatic portion ¢, reaches the mixing ratio isopleth corresponding to the
mean value for the layer 7. This level is called the convective condensation level (CCL).
The temperature of the ground has reached then the value T, (see Figure IX-5)
and from that moment, convection may proceed spontaneously (along ¢}, dry adiabat
up to CCL and then saturated adiabat) without any need of forced lifting.

We have mentioned that in Figure IX-5 the lower part of the sounding has been
assumed to have lapse rates between y, and y,,, corresponding to conditional instabil-
ity. Conditional instability is sometimes classified into three types:

of the real larent type: when A, > A_, as in Figure IX-5.

of the pseudolarent type: when A, <A_.

of the stable type: when no positive area 4. appears for
parcels of any level.

Conditional
instability

Because a measure of the instability area can take too long for routine application, it is
frequently substituted by the determination of the difference of temperature T, — T, at
500 mb for parcels rising from the 850 mb level; this value is called the Showalter stability
index. The larger positive this index is, the greater is the local stability. Large negative
areas, on the other hand, will correspond to large negative values (i.e., several degrees) of
the index.

It must be kept in mind that this analysis of vertical stability must be assessed in the
context of the synoptic situation and taking into account the approximations involved.
Forinstance, the difference of areas A, — A4 _ may not be particularly importantif 4 _ is
large enough to prevent the onsetting of convection. Conversely, small negative areas
may easily be eliminated during insolation or may not even be meaningful, in view of the
local temperatures’ contrasts, which are not taken into account in the analysis; these
differences will exist owing to the different characteristics of the ground surface (low heat



VERTICAL STABILITY 191

capacity and conductivity of the ground will favor overheating of its surface) and
convection (updrafts or thermals) will start over the areas at higher temperature.

9.7. Oscillations in a Stable Layer

If some disturbance provokes a vertical displacement in a stable layer (y,<7,),
an oscillatory motion results. This will actually be damped by turbulent mixing of the
borders of the parcel with the environment. For the parcel method, which does not
take into account this effect, the motion will be undamped.

The acceleration is (formula (8)):

2

G q ;

Emis (V_l.\f)z (48
= =7 )

¥

where z is now written for the displacement. This is the equation for the motion of a
linear harmonic oscillator:

F4+kz=0, (49)
where the force constant is
2 2
k=L (Gi-r)=0’= (z—ﬂ) (50)
T; T

(w = angular frequency; 7 = period). The solution is
z=Asinwt, (51)

and the period

= [T

(52)
g v — Vv

T

will be larger, the smaller the difference between the lapse rate of parcel and environ-
ment. The angular frequency of such (gravity) waves is usually referred to as the
Brunt-Vaisala frequency.
For example, let us assume that
T,=0°C, 7, =0, Ye = 74 = 1/c,, (unsaturated parcel).
We obtain:
T=2335s=35.6min

If A=200 m, the maximum velocity of the oscillation will be

200 x 2n
335

2= Aw =37ms '.

max
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9.8. The Layer Method for Analyzing Stability

As we remarked in Section 1, one of the main defects of the parcel method is the
assumption that the environment remains undisturbed. The ascent of an air mass
must necessarily be compensated by the descent of surrounding air. If the rising masses
cover an appreciable fraction of the total area, the error becomes important. In order
to allow for the compensatory descending motion, Bjerknes devised the layer, or
‘slice’, method, which we shall describe now.,

Let us consider a certain level, over an area large enough to cover a representative
number of possible ascending currents (Figure [X-7). Let us discuss a virtual process
by which updraughts start, covering an area A’, while this movement is compensated

N A
L1 | | | Jiu i
¥ & | ] t ¥ ¥ [T ¥ %
U' U

Fig. IX-7. Ascending and descending motions according to the layer method.

by a general descent of the environment, covering an area 4. We assume that the
velocities are constant and equal to U’ (upwards) and U (downwards). The layer is
initially uniform. The total mass of ascending and descending air must be equal:

AU’ = AU. (53)

For a time interval d¢, the displacements of ascending and descending air will be dz’
and dz, respectively, and

z A

U _dzjdt dz A (54)

U’ dz'/dt dz' 4

where the velocities and displacements are expressed as absolute values.

Z,+dz

Fig. IX-8. Layer method. Case y, < 7, < yg With instability.
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The stability conditions will result, as in the parcel method. from the value of the
acceleration # of the rising air as given by Equation (4). In order to calculate the
difference (T, — T,), we shall consider the level z; of the layer at the time dr of the virtual
displacement. The air crossing z, upwards comes from the level z;—dz’, and the air
crossing downwards, from z, + dz (Figure IX-8). 7,, " and y are, respectively,
the geometric lapse rate of the atmosphere at z; (at the initial time), and the process
lapse rate (for virtual temperature, although the subscript ¢ has been dropped here
for convenience) of ascending and descending air (approximately y4 or y,. as the
case may be, according to Section 4). If the initial (virtual) temperature at z, is T, .
at the time dr we shall have, for the temperatures of the ascending and descending air:

T.=T,+79dz —ygds' =T, +(y,—y)gd
T,=T,—ngdz+ygdz=T, +(y—y)gdz
AT, =T, - T,=(y, —7)gdz' —(y —p)g dz

' A’ r -
=9[{m—?)—;w—m]d: (55)

where the relation (54) has been introduced. Replacing AT, in Equation (4) by (55),
we have for the rising air:

2 )
g A

v —7)— =@ -7 |dz’,
T‘[} 7") (}' ]

and arguing as in Section 2, we obtain as the stability criterion, that in the relation

N:

’

e oA ;
l’?,—?)—;{?—m%:ﬂ (56)

the sign > corresponds to instability, the sign = to indifference, and the sign < to
stability.

It may be noticed that for the particular case in which the area of rising air is a
negligible fraction of the total area, 4’/4 =~ 0, and Equation (56) becomes equal to the
conditions (9) derived with the parcel method.

Let us consider now the different possible cases.

(I) yo<7,<y4 (conditional instability) and the air is saturated at the level z,.
It is the case of a layer at the condensation level. The rising saturated air will follow a
saturated adiabat, while the descending air will follow a moist (approximately a dry)
adiabat: y' =y, and y = y,. Condition (56) becomes

h—tw, A _ U

< (57)
}'ﬂ s J'\-' ‘;I‘ LJ

where the upper sign corresponds always to instability. Stability does not depend only
on the value of y,, but also on the relative extent of convection. Instability will be
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reached more easily if this extent is small (i.e., small A’/4 = U/U’). Figure IX-8
corresponds to instability, and Figure IX-9 to stability.

Zo+dz
%
N
Zo
Tyg ;,\-ATV<O
L s

Fig. IX-9. Layer method. Case y,, <y, < y4 with stability.

(IT) y,>7v,y'. Whatever may be the values of y, 9" and 4'/4, Equation (56) indicates
instability, because both terms on the left side are positive. Let us notice that, accord-
ing to this method, A7, is larger than for the parcel method, which only gives the
first term of Equation (55).

This may be the case of unsaturated air rising in an unsaturated environment
(y=17"=y,4), of saturated air in a saturated environment (y=y"=y,), or of saturated air
rising in an unsaturated environment (y=7y4: 7" =17,); in the last case the reference level
is the saturation level.

These cases are shown by Figure IX-10.

(IIT) y, <y,y". Whatever may be the values of y, y" and 4’/4, Equation (56) indicates
stability, because both terms on the left are negative. Again the difference AT,
(negative) is larger in absolute value than in the parcel method.

FigureIX-11corresponds to this case, for which we have the same possibilities asin (II)
regarding saturation.

Thus, the layer method shows us that the effect of the environment subsidence due to
the convection is as follows: when the parcel method indicates absolute instability, this
effect makes the instability even more pronounced; when there is absolute stability, it
makes it even more stable; when there is conditional instability, the environment

Z3dz
YNV >y
O ZO

),I

AT, >0

Z5-dz

Fig. IX-10. Layer method. Case 7, > 7, 7' (absolute instability).
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ATy <Q ¥
AN -

YN F= 0

z,-dz

Fig. IX-11. Layer method. Case y, < v, " (absolute stability).

subsidencequalifiesitinsuchaway that theinstability becomesless pronounced and may
even revert to stability, according to the extent of the convection and to the particular
value of y,.

The layer method constitutes an improvement over the parcel method in that it
disposes of one of its most objectionable assumptions. It provides a satisfactory tool
for the analysis of stability at a given level by considering infinitesimal virtual motions.
Its application, however, requires an estimate of the parameter A'/A, and this would
generally be an arbitrary guess.

9.9, Entrainment

When the parcel method is applied to finite vertical displacements, as in the analysis
of conditional instability (Section 6), the assumption of no mixing with the surround-
ings remains as the main source of error; in fact, turbulent mixing is very active, and
ignoring it is the cause of obtaining exaggerated values for the temperature difference
between parcel and environment, the kinetic energy acquired by a saturated parcel and
its liquid water content. The main effect of mixing is to incorporate into the rising
parcel a certain amount of external air that becomes mixed with the rest of the parcel;
this is called ‘entrainment’. There is also the possibility of ‘detrainment’, i.e., of a
certain proportion of the rising parcel being shed and coming to a halt while mixing
with the surrounding air. If we take into account only the first effect and an estimate
can be made for the proportion of external air being entrained per unit length of
ascent (rate of entrainment), a convenient correction of the parcel method predictions
can be worked out. This will now be explained. The rate of entrainment, however, is a
highly variable parameter, depending on the stage of development of the cloud, the
dimensions of the ascending mass and the intensity of the convection (vertical veloc-
ities), therefore difficult to estimate, but the method will show how the effect of
entrainment on convective parameters can be visualized by a simple graphical pro-
cedure on a diagram.

We divide the ascent into a number of steps, and consider each step as consisting
of three processes:

(a) the air rises 4z, without mixing, as in the parcel method:
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(b) it mixes isobarically with a certain proportion of the surrounding air (cf.
Chapter VII, Section 4); and

(c) liquid water from the parcel evaporates, until the gaseous phase becomes again
saturated (adiabatic isobaric evaporation), or until the water has completely evapo-
rated. This process will not be required if the parcel is not saturated before or after
mixing.

By repeating this procedure in successive steps, a much more realistic curve can be
obtained for the rising parcel properties whenever we can have a reasonable estimation
of the proportion of external air incorporated in each step.

The correction could be computed from the formulas in Chapter VII, but it is more
conveniently estimated on a diagram. Let us consider Figure IX-12, where one step

Fig. IX-12. Graphical correction for entrainment.

of the process is followed on a tephigram. We assume that EE’ is the state curve of the
environment, AD the saturated adiabat that the parcel would follow if it ascended
without mixing from the point A4 (reached from a previous step, process (a)). We shall
assume that in every step 50% of external air is incorporated (and no air from the
parcel is lost). At the level p, isobaric mixing takes place (process (b)); the point B
results from mixing air masses E and A in the assumed proportions. According to the
rule of mixtures, the sesgment BA will be in our example one-third of EA, because the
resulting temperature must be the weighted average of 7 and T,. Process (c) 1s
substituted with sufficient approximation by the process defining the pseudo-wet-
bulb temperature (Chapter VII, Section 13): ascent along the dry adiabat until satura-
tion (point ), and descent along the saturaied adiabat to level p,. We obtain thus
point C, representing the parcel at level p,. )

A new ascent to the next step will bring the parcel to 4" at level p,, where the pro-
cesses of mixing and evaporation are performed again in a similar way. Point C’ 1s then
obtained. The segment CC’ is the corrected trajectory of the parcel between the levels
py and p,. By repeating the procedure. new segments will be added, and the whole
curve, between the convective condensation level and the level at which all the liquid
water disappears after crossing the state curve to the left, can be constructed.

It will be remarked that in each step the resulting humidity of the isobaric mixture
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has to be computed analytically in order to be able to determine the saturation point S.

Entrainment can have a major effect on cumulus convection processes, and in partic-
ular on their evolution in time. If the environment air surrounding the cumulus cloud
is relatively dry, as it will be during the early stages of the growth of the cloud, detrain-
ment (or external entrainment) will result in dissolution of cloud elements, leaving.
however, a moister environment than previously existed. The temperature of the
rising air will decrease as a result of the initial mixing and of the subsequent evapora-
tion, reducing or even nullifying the relative buoyancy of the rising parcel. The same
process will cause isolated cloud turrets to dissolve and appear to fall back into the
parent cloud. Internal entrainment will similarly reduce the liquid water content and
buoyancy of cloud elements inside the cloud. so that the net effect of these processes
is to produce horizontal gradients of liquid water content and vertical velocities,
with maximum values in the interior of the cloud. Only in the central core of a cumulus
cloud can one achieve theoretical values of liquid water content (usually known as
‘full adiabatic’ values). Vertical velocities, even at the core. seldom reach their
theoretical values because of the reduction of cloud buoyancy, and as a result cumulus
cloud tops seldom reach the predicted level (of equilibrium with the environment).
A further consequence of these mixing processes is that the cloud soon develops a
dome shape, rather than a cylindrical shape. If an ample supply of energy exists.
the damping effect of the environment will decrease as its relative humidity increases.
until eventually a more-nearly columnar development of the cloud to high levels is
possible and the cumulus cloud becomes a cumulus congestus.

9.10. Potential or Convective Instability

With the parcel method, we have so far considered the stability properties of the
atmosphere when an isolated mass, the parcel, is vertically displaced. This occurs. for
instance, when the warming of the lower layers causes the ascent of air masses with
dimensions of the order of hundreds of meters to 1 km. These masses can eventually
become accelerated by a latent instability. as we have seen. They are called thermals
or bubbles, and become visible as convective clouds. When the convection becomes
more intense we may have, instead of isolated masses, a continuous jet of ascending
air. The previous calculations would apply equally to this type of convection.

It is also important to study the vertical movements of an extended layer of atmo-
sphere, such as may occur. for instance. during the forced ascent of an air mass over an
orographic obstacle. or due to large-scale vertical motions of appreciable magnitude
(as, for example, in frontal situations). We shall now consider this case, deriving the
effect of the movement on the lapse rate of the layer.

9.10.1. THE LAYER IS AND REMAINS NON-SATURATED

We represent the layer oz in Figure 1X-13, where the right hand side is a diagram
z, T (the relations would be similar on a tephigram). This layer ascends from p to p’;
at the first level the area considered will be A’ and the thickness dz’. The virtual
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Z |

Fig. 1X-13. Potential instability, non-saturated layer.

potential temperature 0, of the base of the layer will remain constant during the ascent,
which we assume adiabatic, and the same will happen with the temperature 8, + 06,
of the top of the layer: therefore the variation 46, through the layer also remains
constant.

Conservation of the total layer mass requires that
pAdz =90 A’ 7 (58)
or
5_5 :ﬁ = _pAT; (59)
0z o0'A" pAT,

where all the primed variables correspond to the final state, the gas law having been
introduced in the last expression.

As 60, remains constant, the gradient of (), must be inversely proportional to dz.
We must have:

30, 80,82 86, pAT,

= = . (60)

oz 0z' ¥z Oz p'A'T,

Or, dividing both sides by g:
. 5 "
ﬁﬁ__{ﬂ, PAT, ' (61)
o¢ ¢’ p'A'T,

and introducing Equation (40):
0 6 pAT,
== ==Ca—) - (62)
e T T

and solving for y.:



VERTICAL STABILITY 199

; pA
Y =" —‘p_A(Yd_?’v)

rAr
=3+ Ga— ) (1 — p—)- (63)
pA

If 3, = 7, ¥, = 74 = ¥, ; that s, the layer is adiabatic and the ascent occurs along the
same adiabat.

If 7, < 74 (the usual case), both the vertical stretching (horizontal convergence;
shrinking of the column: A’/4 < 1) and ascending motion (p'/p < 1) increase the lapse
rate, the layer thus becoming less stable. (This is the case of Figure IX-13.) Conversely,
both the broadening of the layer (horizontal divergence: A'/4 > 1) and the descending
motion(p'/p > 1)decreasethelapserate and therefore tend to stabilize the layer (this case
is the opposite of Figure IX-13, but it can be visualized on the same figure by exchanging
primed and unprimed letters).

If y, > 74, we would have the opposite effects, but this situation does not occur in the
atmosphere, as it corresponds to absolute instability.

Equation (63) indicates that, for increasing p'4’'/pA, the sign of the lapse rate can
change, resulting in more or less pronounced inversions (y,<0). If on the contrary
p’'A’'/pA decreases tending to zero, y, will tend to the dry adiabatic lapse rate 3.

These cases occur in large scale cyclones and anticyclones. In anticyclones, the
subsidence frequently gives rise to inversions. In cyclones, the convergence aloft may
lead to nearly-adiabatic lapse rates.

In the example of Figure IX-13, both effects (rising motion and shrinking) tend
to make the layer more unstable, which becomes apparent by the increase in lapse
rate from BC to B'C’.
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Fig. 1X-14. Potentially unstable layer becoming partly saturated.
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9.10.2. PART OF THE LAYER BECOMES SATURATED DURING THE ASCENT

We shall not study this case analytically, but it is easy to see the qualitative effects on
a diagram.

If we assume that 64, /6z <0, i.e., that the layer is more humid at the base than at
the top. the base will become saturated (BB,) before the top in a rising motion. From
that moment it will follow the saturated adiabat (B,B’), while the top continues along
a dry adiabat (CC’). This is shown schematically on a tephigram in Figure IX-14,
where it is easy to see that the ascent makes the layer absolutely unstable. This is
expressed by saying that the layer was originally potentially unstable.

If, on the contrary, d6,,/dz > 0, we have the opposite effect, as shown in Figure IX-
15, and the layer is said to be potentially stable.

If 86,,/dz = 0, the layer is said to be potentially neutral. *
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Fig. IX-15. Potentially stable layer becoming partly saturated.

In the case of bulk ascent of an atmospheric layer leading to saturation, a potentially
stable layer will tend to form stratiform clouds, while a potentially unstable layer will
produce cumuliform clouds and perhaps eventually convective precipitation (showers).

All the analyses of vertical stability considered so far have been summarized, for
convenience, in Table TX-1.

* We notice that the conditions 66,./6z< 0 refer here to the stratification of a layer, initially not
saturated, which rises in the atmosphere, while conditions (44) referred 1o the environment, when a
saturated parcel rises in it.
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TABLE IX-1
Vertical stability

(A) Local stability conditions

ol
Ya» unsaturated; or— =0

Parcel method: 3, €7, = 50
V<

g

Y, Saturated; or

]

A
Layer method: (v, —7) 2 —-(7 =)

where upper inequality signs correspond to instability, lower inequalily signs
correspond 1o stability, equality signs correspond to indifference.

vy > 74 abselute instability
V4> 7y > 7w conditional instahility — (B)
¥ < ¥w absolute stability

(B) Finite vertical displacements: [atent instability
AL > A_  real latent type
A. < A_ pseudolatent type
A. =0 stable type

(C) Layer vertical displacements: potential or convective instability.

. pA
Unsaturated: 7, =7, + (74 — ;.',j(l - _pA_)
Plp <1 ascent
AlA {‘ lateral convergence
rip >"_ descent
A'/A >4 lateral divergence

} —s destabilization

} — stabilization

R a0, <0 {potennally unstable (upper sign)

ag = potentially stable (lower sign)

9.11. Processes Producing Stability Changes for Dry Air

From Equation (40),(Chapter VIII, Equation(21))and the gas law, it follows that, for dry
air,

olnf
op

R
== . (64)

This equation suggests that a useful stability parameter could be defined by the
relation
d1In0 _
TR o) (65)
op
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with the associated stability criteria
¢20, (66)

where, now, the sign > corresponds to stability and < to instability. At a fixed
pressure, ¢ is a single-valued function of y. Moreover, the finite-difference approxi-
mation to ¢, — 4 Inf/4p, is obtainable immediately from a tephigram curve.

At a fixed isobaric level, ¢ increases as the lapse rate decreases, i.e., as the stability
increases; and o decreases as the lapse rate increases, i.e., as the stability decreases.
Thus, for increasing stability (do/dr),> 0, for decreasing stability, (de/df),<0. From
Equation (695),

(a:a) =[£~(_ mne)] _ _g(e lna) | 67
ot /p ot ép /e ép\. @t Jp

Qur basic coordinate set is (x, ¥, p, 1) and in terms of this set:

dlné [éInd dlInf diln@ dp @In0
= + u +v + = (68)
dt it Jp 0x Jp ¢y /o dt dp
where u and v represent the x- and y-components of wind velocity (positive to east
and north, respectively) and dp/dr represents the vertical motion in isobaric coor-
dinates, the total rate of change of pressure with time for a moving element of air.

It can be related to the vertical velocity by an expansion of the total derivative in terms
of the (x, y, z, t) coordinate set:

d ¢ G 3 3 9 3 5
L cally vc—p+w£=(ﬂ]+ u—p+u?—‘q)—ggw’="~ggw.(69)
dt ot Ox ay Oz ot 0x ay

The bracketed terms are relatively small and physically insignificant, as far as approach
to saturation is concerned, i.e., they result in very small adiabatic temperature
changes.

For dry adiabatic changes, d Inf/dr=0, and in general, from the first principle of
thermodynamics,

dind _ 1 50
dt ¢, T ot

(70)

From Equations (65), (68) and (70),

(o‘in@) =_{u(olnﬂ) +U(c-]nﬂ):|+ad_p+ 1 ig a1
at Je dx Jp av /e dr ¢, T ot

From Equations (67) and (71),

) ~ 5 3 i A d )
) (] 562) 259 o
ot)y Op ox /o dy /Jed dp\ dt dp \¢,T &t
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The first term can be interpreted in two alternative ways. Since
dinf=dInT—xdlInp, (73)

the first term can also be written as

a[ (6inT) (ﬁlnT)]
—lu + 0 3
ap dx Jp dy Jo

and is thus related to the variation in the vertical of the horizontal (strictly speaking,
isobaric) temperature advection. Thus this term could be called the differential
isobaric advection term. It can be interpreted in a slightly different way by expansion,

i.e.
¢ [ (61118) (a Inﬂ)] [eu (a Inﬁ) 6v(6|nﬂ):|
—|u +v == T +
6p ax Jo 3}' P ap éx /o 5p @_v P
+|:u£(81n(}) +Uc_3(olnﬂ)] 670
6p ox P 3p a_\' P

The second bracketed quantity can be rewritten, by interchanging the order of differen-

tiation, as
0 7
-l R ] et R |
ox\ dp /lp dy\ ép /e ox/p oy/p

which is simply the isobaric advection of stability, a quasi-horizontal process. In the
first bracketed quaniity, In @ can again be replaced by In T and the thermal wind
equations of dynamic meteorology employed to introduce the isobaric shear of the
geostrophic wind components - du,/dp and drv,/dp. i.e..

fj_u(f?[nr) +i3(a[nr) =;;9(gu _e_:ﬁ) —_—
ap cxX P op oy p Cp (”p op op

where we denote by f the Coriolis parameter, 2w sin¢. This expression has a non-
zero value only if there are cross-contour (i.c., acceleration) components of the
horizontal wind field, and such effects are generally of minor importance. Thus, for
quasi-geostrophic or quasi-gradient winds, the differential isobaric advection term
implies merely the isobaric advection of stability.

For the benefit of those unfamiliar with the concept of the geostrophic wind, we
will digress at this point to present a few formulae which illustrate and explain this
concept, and from which the relation of the temperature field to the variation in the
vertical of the geostrophic wind can be deduced. If we derive the equations of motion
for a set of axes anchored to a rotating earth, neglect friction but take into account
forces resulting from horizontal variations of pressure, we obtain the following wind-
component equations:
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d
U=H—I—E‘ v:pg.'.i_u (.?.”

£ ofdr’ fdr
Here u and v are the x- and y-components of the (actual) horizontal wind, and u,
and v, the corresponding components of the geostrophic wind, a synthetic or theoret-
ical wind, whose calculation is outlined below, and which serves as a very useful
and simple approximation to the true wind. f denotes the Coriolis parameter, 2 sin ¢
(e = angular velocity of the earth, ¢ = latitude).

From set (77) we see that if there are no accelerations for either component (steady
motion), the wind and the geostrophic wind, are identical. The latter can be obtained
from the following equations, in which the hydrostatic equation has been used to
convert horizontal gradients of pressure to isobaric gradients of geopotential:

7 il il
usz_Lﬂhi(fg); l,g:Lzezi(a_ﬂo)_ 78)
fedy  f\dy/e fedx f\ox/e

Since f at mid-latitudes is of the order of 10™* s~ 1, it follows from Equation (77)
that the difference between the actual wind and the geostrophic wind, in any direction.
has a magnitude closely comparable to that of the change of the actual wind component
in any orthogonal direction, following the motion, for a period of 3 h. Since a reason-
able value of acceleration could be 50% of the velocity per day, departures of winds
from geostrophic values would average less than 10%. For balanced motion in a
circular path (total acceleration zero), the wind is known as the gradient wind.

The isobaric shear of the geostrophic wind (which is also a first approximation to
the isobaric shear of the actual wind) can be found from set (78), by a differentiation
with respect to pressure, making use of the hydrostatic equation and the ideal gas law:

cu

duy _ _Li(ﬁ_w) _ _L[E(ﬁ_co)] zl[awg)} =§g(§;{) -
op fop\ay/e fley\ep/le fL oy Jo fp\ay/e

fv, 18 (am) 1 [a (ﬁ(p):| 1 [a(ug}} R, (fr)
L=l === =) =—-|—| === . (80)
op fﬁp ox /p j ox E:‘p p J (':‘-x p JP cx p

Equations (79) and (80) are known as the thermal wind equations, since they relate
the thermal field to the change of geostrophic wind in the vertical. These are the equa-
tions employed to produce the result quoted in Equation (76).

The second term in the stability-parameter tendency Equation (72). the vertical
motion term, can best be studied after further expansion into the form:

c 0 i
__(ﬂ_d_p)=_d_pC_tT_o_i(d_p)' (81)
op\ dt dt ép dp \.dt
The first of these two terms represents simply the vertical advection of stability, while
the second represents the effects of the vertical shrinking or stretching of an air column.

i.e., the change in o= —4 Inf/4p when 4 In0 remains constant, for dry adiabatic
changes, but 4p changes (see Section 10.1.).




VERTICAL STABILITY 205

The third term in the stability tendency equation expresses the effect of vertical
variations in non-adiabatic heating. In the free atmosphere, away from clouds or the
Earth’s surface, this effect will be small, except possibly near the tropopause or similar
discontinuity in lapse rate and hence in the degree of turbulent mixing. Near the
ground, the radiative 9/t decreases in magnitude with height, as was pointed out
in an earlier section, so that a pronounced diurnal cycle of the lapse rate exists in the
lower layers of the atmosphere.

Before considering illustrations on schematic tephigrams of the vertical motion
processes, it will be instructive to examine the degree of conservatism of stability,
as measured by the parameter ¢, and to consider typical vertical-motion distributions
in the vertical. We shall first obtain a relation for the change of stability following the
motion, do/ds, for quasi-gradient flow and quasi-adiabatic conditions. Collecting
component terms for (Jo/cr), from the expansions in Equations (72). (74). (75),
(76), and (81), it follows that

de (60} (Ba) (6‘0’) dp do 0 (dp) :
—=—) tul—] +|—] +——=—=— ). (82)
dt it /p ox/p dy/e dt Op op \dt

From the hydrodynamical equation of continuity (a mathematical expression of the
law of conservation of mass), the shrinking or stretching of a moving air column can
be related to the accumulation or depletion of mass associated with velocity gradients
in isobaric surfaces such that

(8-
dp \dt ox/p  \dy/p

Equation (83), the equation of continuity in isobaric coordinates, expresses the fact
that there can be no mass change between fixed isobaric surfaces. The quantity on the
right is known as the isobaric divergence, when positive, and the isobaric convergence,
when negative, these terms implying depletion and accumulation of mass, respec-
tively. The expression is also referred to, quite generally, as the isobaric velocity
divergence, and expresses the rate of change of mass by quasi-horizontal motions
(outflow minus inflow). The term on the left of Equation (83) expresses the effect of
motions through isobaric surfaces in changing the mass of a layer.

It follows from Equations (82) and (83) that

ome.).(3),
di cx/p \C)/p

Thus isobaric divergence corresponds to an increase in magnitude of ¢, and isobaric
convergence to a decrease in magnitude of . It is clear, however, that no mechanism
exists for changing stability to instability in a moving element of air. and that instability
can only be produced locally if it existed previously upstream. Since instability will
rapidly be destroyed by convective turbulent mixing (leading to y=7,), it follows that
super-adiabatic lapse rates must have an extremely ephemeral existence. However, it
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should be emphasized that significant consequences of the release of instability are
generally associated only with the condensation process (convective clouds, showers
and thunderstorms). For saturated air there are different criteria for instability — the
release of latent heat energy must be taken into account — and in general a combined
dynamic-thermodynamic analysis is required. This topic will be considered further
in the next section.

From Equation (69), dp/dr = —gow, it follows that, over level ground, dp/dr is
essentially zero at the surface. Integrating the equation of continuity from the surface
(po) to an arbitrary level:

Po
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Thus, in a stratum of divergence at and above the surface, dp/dr will be positive,
corresponding to subsidence (' <0); in a stratum of convergence at and above the
surface, dp/dr will be negative, corresponding to ascent (w>0). Vertical motion
studies have revealed that on the average a rather simple pattern of vertical motions
may be expected in the troposphere. In general, tropospheric vertical motions tend
to have the same sign, with a maximum absolute value in the mid-troposphere, in the
vicinity of the 600 mb level, on the average. At this level of maximum (or minimum)
dp/dt, the isobaric divergence must be zero, and this level is generally referred to
as the level of nondivergence (L.N.D.). In any individual case, this level may depart
appreciably from 600 mb, and does not in any event coincide with a specific isobaric
surface. over any great area, at least. Moreover, especially in complex atmospheric
situations, there may well be more than one level of non-divergence in the troposphere.
However, the broad behavior of the troposphere is usually consistent with the existence
of a single level of non-divergence in the mid-troposphere, ecither with divergence
below and convergence above (subsidence) or with convergence below and divergence
above (ascent).

We have already seen that divergence in a stable atmosphere will tend to increase
the stability (decrease the lapse rate) and that convergence in a stable atmosphere will
tend to decrease the stability (increase the lapse rate), both such rates being propor-
tional to the initial value of the stability. Thus, for small stability ((34— y) small) the
effects of a given divergence or convergence on the stability will be small. while for
large stability ((y,—7) large) the effects will be much greater (cf. Section 10.1). It is
of interest to apply this concept. together with the normal divergence-convergence
pattern of the atmosphere, to a consideration of the relative sharpness of frontal
discontinuities as seen on atmospheric soundings on aerological diagrams. The signifi-
cant discontinuity, charted as the front on quasi-horizontal analyses, is the upper
boundary of the transition zone of intense isobaric thermal gradients, separating the
stratum of great stability (¢ large) characterizing this zone from the warm air mass
above of normal stability (¢ relatively small). The discontinuity in stability at this
level may be taken as a measure of the sharpness of the front on the plotted sounding.
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Since isobaric divergence increases the stability in the transition zone more rapidly
than in the warm air, it will sharpen the frontal discontinuity. Since isobaric conver-
gence decreases the stability in the transition zone more rapidly than in the warm air,
it will weaken the frontal discontinuity. [t is reasonable to expect that these effects
would be visible, at least on the average, and synoptic experience does indeed verify
the following conclusions.

Tropospheric ascent:

cold front, slow moving with persistent weather convergence below L.N.D.
warm front, normal activity re weather divergence above L.N.D.

lower troposphere - frontal discontinuity relatively weak
upper troposphere — frontal discontinuity relatively sharp |

Tropospheric subsidence:

cold front, rapidly moving with rapid clearing divergence below L.N.D.
warm front, virtually no weather convergence above L.N.D.

lower troposphere — frontal discontinuity relatively sharp
upper troposphere - frontal discontinuity relatively weak |’

Let us consider now a typical situation with ascent throughout the troposphere. with
isobaric convergence in the lower troposphere and divergence in the upper tropo-
sphere, as it might appear on an aerological diagram, neglecting horizontal advective
processes (Figure IX-16).

In the upper troposphere d/dp(dp/di)<0, and ¢>0, so da/dt>0 (increasing
stability). In the lower troposphere é/ép(dp/dt)=>0, and ¢ >0, so da/cr <0 (decreasing
stability).

Two weak discontinuities in lapse rate (and stability) are produced by this pattern
of ascending motion and adiabatic cooling, and the new sounding may appear to
contain a frontal discontinuity (at high levels), comparable to the passage of a weak
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Fig. TX-16. Stability changes with isobaric convergence in the lower troposphere and divergence in
the upper troposphere.
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cold front. This phenomenon is often observed in advance of cold fronts especially
when the warm air mass is relatjvely dry so that dry adiabatic cooling can take place;
for this reason the phenomenon is known as ‘pre-frontal cooling’. It can be distin-
guished from true frontal cooling, with a new and colder air mass below the front, by
two distinguishing characteristics. In the first place, the cooling is relatively small in
the lower portion of the sounding (effectively zero at the ground in the absence of
advection), and, in the second place, the humidity increases at any level as the tempera-
ture drops. Thus it is always possible to obtain the new sounding by the ascent of
typical warm air.

Let us consider now a typical subsidence situation, illustrated on a tephigram
(Figure 1X-17).

In the upper troposphere, ¢/dp(dp/dt)>0 and ¢>0, so that do/dr<0 (decreasing
stability). In the lower troposphere, ¢/¢p(dp/dt)<0 and ¢>0, so that da/ét>0
(increasing stability). Once again a discontinuity in lapse rate has been produced by
the pattern of descending motion and adiabatic warming, somewhat comparable
to a warm front situation. Since the inversion has been produced by subsidence,
it is known as a subsidence inversion. It can be distinguished from a true warm frontal
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Fig. IX-17. Stability changes associated with subsidence.

passage by the relatively slight warming in the upper troposphere, the steep lapse
rate (small stability) above the inversion, and by the low humidities that will appear
near the top of the inversion layer. One can, of course, obtain representative tempera-
tures and dewpoints by the ascent of the relatively dry air (in nature, or by carrying it
out on the diagram).

9.12. Stability Parameters of Saturated and Unsaturated Air, and Their Time Changes

If we had maintained the effects of water vapor in the derivations of the last section
(i.e., starting from Equation (40)), we might have defined a virtual stability parameter
for unsaturated air as
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All the relations in Section 11 would still be valid, with the subscript v as above, with
quite acceptable accuracy. For most practical purposes, such refinements are unneces-
sary since the virtual temperature increments for a vertically-moving parcel and for
its environment at any time would differ by only a few tenths of a degree Celsius, in
general.

When dealing with saturated air, numerous complications arise, which generally
introduce uncertainties in the temperature (or virtual temperature) of a parcel which
exceed the virtual temperature increment differential between parcel and environment.
In the first place, one will not know whether ascent is of the saturated adiabatic or
pseudo-adiabatic category. Initial saturation is almost invariably followed by cloud
development without precipitation (a saturated adiabatic process), and only later,
when additional physical criteria are satisfied, may precipitation occur (a pseudo-
adiabatic process). For the truly reversible process, the (p, T) variation depends on
the initial condensation level and the virtual temperature will now depend on the
concentration of condensed water as well as of water vapor. Since the volume occupied
by the condensed phase is negligible, the virtual temperature of the cloud air (incor-
porating the effect of the condensed phase as a component of the air) is given by an
extension of the treatment in Chapter IV, Section 11 as

T TU+re) 1+, . TRy
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(87)

These various effects are by no means compensatory. Moreover, once the temperature
of an ascending parcel falls below 0°C, additional uncertainties are introduced with
respect to the level (if any) at which the transition from water-saturation to ice-
saturation takes place. If we imagine a large ascending mass of air, of cloud dimen-
sions, the micro-processes that take place inside the cloud will greatly affect stability
considerations. We must conclude, then, that the stability or instability of saturated
air can only be handled in its grosser aspects by a pure thermodynamic analysis.

If we have a parcel of saturated air, it will be stable relative to its environment
(saturated or unsaturated) provided that y<y,, where y, is some sort of saturated
adiabatic lapse rate (true or pseudo, relative to water or ice). If y>7y,, the parcel will
exhibit instability (analogous to dry-air instability when y>y,). Since y,<y,. a layer
of unsaturated air may itself be stable, but will still accelerate the vertical motions of
a saturated parcel, if y,<y<y,. This we have defined (in Section 5) as conditional
instability, since it depends on the state of a moving parcel. If it is possible for a
moving air parcel, on adiabatic ascent to and beyond saturation, to achieve the
temperature of the environment at some level, the instability is then known as latent
instability (see Section 6). If the conditional instability criterion (y,>7>7,) is to be
expressed in terms of the vertical gradient of some specific property of the air, the
appropriate property must relate to the saturation or pseudo-adiabat through (p, T).



