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These adiabats are labelled in terms of 6,,, (we may drop the subscript ‘a’ here without
ambiguity), but the 8, pseudo-adiabat only passes through (p, T) if the air is saturated.
Let us define the saturation potential temperature, 0, as the value of 6, for the pseudo-
adiabat passing through (p, T), i.e., as the value of 0, if the air were saturated. Mathe-
matically,

6,(p, T,r)=04(p, T,ry), for r,=r.(p,T). (88)

This is a rather artificial property, since it cannot be achieved by any simple physical
process. It is, nevertheless, a rather useful concept, especially in air-mass analysis.
Since most air masses have lapse rates close to the pseudo-adiabatic, a given frontal
surface will be characterized by nearly constant values of 0,. 0, is conservative for
saturated adiabatic processes, since it is then equal to 0, but is not conservative for
dry adiabatic processes.

We therefore have conditional instability in any layer for which 0, decreases with
height, or for which

dlnf,
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We will have latent instability in any layer for which 6, is less than 6, at some lower
level, as is evident from Figure IX-5 or any sounding on a thermodynamic diagram.
Conditional instability without latent instability is essentially no instability at all;
on the other hand, latent instability is impossible without conditional instability.
Thus the presence of conditional instability indicates that one should examine the
sounding more carefully for the possible existence of latent instability; if conditional
instability is absent or marginal, a further stability analysis is not required.

One could carry out an analysis of stability changes with time in terms of the para-
meter, g, so that de,/é¢r would correspond to decreasing stability or increasing condi-
tional instability. However, since the only important class of conditional instability
is latent instability, time changes of this latter phenomenon are more revealing and
significant. Since the 6, values and the 6, values involved in latent instability refer
to quite variable layers, in practice we would want to investigate 00,/0t in the middle
troposphere and dfl,,/ét in the lower troposphere. Pressure levels of 500 and 850 mb,
respectively, have been adopted for the Showalter Stability Index, useful for hail,
tornado and thunderstorm forecasting; thisindex was defined at the end of Section 6. The
Showalter Index is comparable to, but not identical with: (6,)so0—4)ss0. It will always
have the same sign as the above quantity; negative values are usually associated with
severe thunderstorm situations.

If we have a layer of saturated air, there will be absolute instability if y > 7, or if

g, = 0. (89)

o, = — <0. (90)

This instability would soon be released by turbulent overturning and mixing of the
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cloud air, a process that occurs in convective-type clouds, in which individual cells
are often characterized by marked ascent or descent. It follows that saturated air is
seldom observed with a lapse rate exceeding y,; but do,, /0t <0 in saturated air would, of
course, indicate the development of convective clouds, which are often observed to be
imbedded in stratiform cloud decks.

Now let us consider the case of a layer of unsaturated air for which ¢, <0, but
>0 and o, may be positive or negative. We may note in passing that if o, >0 at all
levels, 8, can never exceed 0, at a higher level, even though layers of conditional
instability exist, since 6> 0,,. Thus, layers with o, <0 and with ¢, <0 (not necessarily
the same layers) are necessary but not sufficient conditions for latent instability.
If the layer with ¢, <0 is now lifted to saturation, by a general ascent over a large area,
instability can be released as soon as saturation is achieved. This we have defined in
Section 10 as potential instability and it can only be realized by mass ascent. Latent
instability, on the other hand, can be realized by parcel ascent, usually a convective or
thermal process. For large scale energy release, however, general ascending motion is
usually required; in subsiding air, convective activity is usually choked off and con-
vective clouds seldom penetrate a subsidence inversion, for example.

In order to investigate ¢6,/dt, e /ét, ¢0,/ct or dg,/dt, we require an analytic
formulation for 8, (p, T, r) and of 8, (p, T, r,), and thus must be able to integrate the
pseudo-adiabatic equation, at least approximately, from p to p,=1000 mb, and solve,
directly or indirectly, for 8,,. Since we will be interested basically in 6,/dt and é0,/ép,
we may introduce approximations that would not be permitted if precise values of 8,
alone, were to be the end product.

The simplest way to formulate 0, or 0, is to make use of the approximate equality
between isobaric and adiabatic wet-bulb temperatures. We will assume that 7,,=
=T;,=T, and 0,,=0,,=40,, where 0, is the isobaric wet-bulb temperature of moist
air at (py, 0, r) — for purposes of calculation — but is also considered to lie on the
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Fig. IX-18. Temperature parameters, on a tephigram.
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same pseudo-adiabat as (p., T;) and (p, T.,), as illustrated on Figure IX-18, where
dash-dot lines represent pseudo-adiabats and the dotted line a saturation mixing ratio
line, corresponding to the actual mixing ratio of the air sample at (p, 7). Along it,
we can assert

= rw(pm T::) = rw(ps I]'::l) = rw{.pi)! 64)-; (91)

where we have defined a parameter 6,4, the dew-point potential temperature.

Consistent with the assumed equality of isobaric and adiabatic wet-bulb tempera-
tures and potential temperatures, we may employ a simplified version of the Psychro-
metric Equation (Chapter VII, Equation (30)) and write, at p,,

ey (6y) = e, (6,) — % 6—6,). (82)

W

We may regard &l,/c,_ p, as a constant and denote it by B, i.e.

B (93)
Cpa Po
Since

r = €, (Ud) = ew(j:l) (94)

rte Po p

we have, from Equations (92), (93) and (94),
0, =0— B[ew(eu - £ ew(m}. (95)
p

If the air at (p, T) is assumed to be saturated, as implied by the definition of 6.,
we have, by analogy,

0,=0 —B[ew(ﬂg)—@ew(r)]. (96)
p

Separating out the properties of the original sample of moist air —p, T, T, and 6.
we can rewrite Equations (95) and (96) as

0, + Be,(0,) =0+ B2 e, (Ty) = 0, ©o7)
p

0, + Be,(8,) =0+ B e (T)=4,,. (98)
P

In Equation (97), 6., a single-valued function of 6, is not the isobaric equivalent
potential temperature, 0,,, defined in (Chapter VII, Section 14), but is instead the iso-
baric equivalent temperature, at p,=1000 mb, of air which has been taken dry-
adiabatically to 1000 mb. In other words, 6, is not strictly conservative for dry
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adiabatic changes of state, whereas 0,, is conservative for such a process (and so also
is 6, as defined by Equation (97)). These facts become apparent if we introduce
Equation (93) into (Chapter VII, Equation (29)), giving

To=T+BRe—T4+B2 (7). (99)
p p
Introducing the definition of potential temperature, we have
" 14w
O =T, (@) =0+ B(@) ew(T) (100)
p p

whereas Equation (99) applied at p, gives, using Equation (94),
0.=0+ Be,(8) =0+ BE e (T)),
p

which is identical to Equation (97). 6, is much more useful than 8,_, being conservative
for a dry adiabatic process (for which 0 and r are, in turn, conserved), and could be
termed the isobaric-adiabatic equivalent potential temperature. There will be small
changes in #, (but not in 6,,) for saturated adiabatic ascent or descent, but these are
less important from a practical standpoint in view of the uncertainties in the precise
physical processes in operation.

In Equation (98), 6.., a single-valued function of #,, may be called the saturation
equivalent potential temperature. It depends only on the pressure and temperature
of an air sample and can be computed, simply and directly in an analytic sense,
from those parameters. Both 6, and 6., are ideally suited for a computer analysis of
stability characteristics.

Now we may return to a consideration of stability criteria and stability changes, for
the three most interesting classes of instability — conditional, potential and latent.
Analogous to Equations (89) and (90), we may define

a==—5inge s g“=_%, (101)

ap (sp

We have conditional instability if

>y or o, <0 or o,.<0.
We have potential instability if

o,<0 or o ,<0.
We have latent instability if

0, >0.(p) forsome p <p,
or if

0. >6,.(p) forsome p <p.
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We may now consider the physical processes that cause changes in the various types
of instability being considered in this section. It will be convenient in formulating
relations for such changes to neglect non-adiabatic effects, so that such effects will be
discussed briefly first, in qualitative terms. Turbulent diffusion of heat and of water
vapor in the vertical will always act to reduce potential stability if initially there is
stability (and to reduce potential instability if initially there is instability), since the
net result of vertical mixing processes is to reduce the vertical gradient of 6,. On the
other hand, turbulent interchange will favor the development of conditional instability.
The other major non-adiabatic process is radiation, chiefly the long wave radiation
of the earth and its atmosphere since solar radiation is absorbed primarily at the earth’s
surface, promoting instability of all types in the lower layers of the atmosphere. To
appreciate the effects of long-wave (infrared) radiative exchange, we require informa-
tion on the isobaric temperature changes which result from the vertical divergence of
infrared radiative fluxes. When skies are clear, one can expect a cooling of the order
of 1 to 2°C day ™' in the mid- and upper troposphere, somewhat less cooling in the
lawer troposphere and lower stratosphere and usually a minimum of cooling at the
tropopause and a maximum (second maximum) at the earth’s surface. When an
overcast cloud layer is present, the atmospheric cooling is enhanced immediately
above the cloud and greatly reduced below the cloud (and throughout the entire
atmosphere below the cloud, unless the cloud is very high). The cloud itself will cool
markedly if a low cloud and negligibly if a high cloud; the upper layers of the cloud
always cool while the lower layers tend to warm, the net effect almost invariably being
a cooling. Thus, with clear skies the effect of radiative cooling is to stabilize the
atmosphere near the ground (offset by convective and conductive processes during the
day). destabilize the middle and lower troposphere, stabilize the upper troposphere
and destabilize the lower stratosphere. Radiative processes, like turbulent mixing
processes, tend to reduce lapse-rate discontinuities and to smooth out bases and tops
of inversion layers. When clouds are present, these effects are modified. Below an
overcast layer, radiation acts to stabilize the atmosphere, and similarly above the
cloud layer. Within the cloud layer, radiation acts to destabilize the stratification,
and this effect may often be important in the development of nocturnal thunderstorms
and of convective-type middle clouds. The cloud destabilization is intensified by the
strong atmospheric cooling above the cloud and the warming below the cloud.

Returning now to adiabatic processes, the development of conditional instability
is essentially associated with an increasing lapse rate (and a decrease in ¢). Thus the
processes discussed under the heading of stability changes for dry air (Section 11)
apply here with equal force, and further elaboration is unnecessary. For the develop-
ment of latent instability, one requires an increase in 0, or 0. at some level or a
decrease in T or 6, or . at some higher level. At the higher level, ascent and advective
cooling are the factors which assist in this process, whereas at the lower level horizon-
tal advection of air of higher 0,, or 6, is the important factor, vertical motions merely
shifting in the vertical the level of maximum 6,, (or 0,) along the trajectory. Expressed
in another way, since 6, is conserved for all adiabatic processes, local changes are due
to horizontal and vertical advection.
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The rate of change of potential stability (or instability) can be investigated by
formulating do./dt, as we did do/df for dry air in Section 11, Equation (72) et seq.,
again employing an (x, y, p, 1) coordinate set. Thus, from Equation (101),

do. _ a(_alnae)_ & o1no0,

o ap T ap ot

(102)

and de,/dr will be positive for increasing potential stability or for decreasing potential
instability. Since 6, may be considered conserved following the motion of the air,

dind, 20, 23mm0,  cInb,  dpdlnf, (103)
dt ot ox ay dt dp
Hence, from Equations (102) and (103) and using Equation (101)
- A
o (0 putl)_ 0., ) 09
o op\ ox dy / ép\ di

Carrying out the differentiation implied by Equation (104), we have, again using
Equation (101),

%_(@61n0¢+@é‘ln9=)_(uﬁae age)_a ¢ dp _dp éo,

+v —— -
at dp 0Ox op @y 6x dy

In order to evaluate the first term, above, we must differentiate Equation (97),
at constant pressure. Thus,

(_%3 In 9.:) 1 [(Q@) 4+ g Poden(Ty) (ﬂ) ] (106)
dx Jp 0, \ox/p p dT; ax /o

Introducing the equation for potential temperature and the Clausius-Clapeyron
equation,

6]110,:1(@) 9T Bpo een (T, 0Ty (107)
ox 6.\p/ ox O.p RT{ ox

Writing a similar equation for ¢ In(,/dy, and using Equation (93) we have

udlnd, ovadlnd, 1 (po)“(ﬁu 8T  dv ar)
— + — =— — — -

ép 0x op dy 0.\p/ \ép dx ¢p dy
2;2 ) -1
4 el (6__?" 320 _T) (108)
RO PTy \6p éx  p Oy

The first term was examined for the dry air stability tendency analysis in Equation
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(76), by introducing the isobaric shear of the geostrophic wind

2 o 7 3
oF_ 800 5 9T _Joo (109)

0x R, ép dy Ry dp

Thus, the first term in Equation (108) vanishes for geostrophic or gradient (i.e.,
non-accelerated) winds, and can be neglected in general. The remaining term in
Equation (108) vanishes for saturated air, since then 7= T, but for unsaturated air it
may be significantly positive or negative (we will return to this term shortly).

The second term in Equation (105) represents the isobaric advection of potential
stability (or instability) and the fourth term the vertical advection. The remaining
term can be written, using Equation (83), as

—u‘cid—pzac(@—l-gf), (110)
dp dt dx dy

and is thus the vertical shrinking or stretching term (or, the horizontal divergence or
convergence term, respectively).

As in the case of dry-air stability, it is instructive to consider the degree of conserva-
tion of potential stability, following a trajectory, for the case of quasi-gradient flow
and quasi-adiabatic conditions. We commence with the formal relation for d6,/d:, i.e.,

%=%+u%+b‘(—??—e+d—p%. (L11)
dr 0t 0x dy dt dp

Introducing Equation (111) into (105), substituting Equation (108) and (110), and
making the geostrophic assumption via Equation (109), into wind shear terms but not
convergence terms, we obtain

- - 21Z =
%zge(@+ﬂ)+w(ﬂﬂ_£@)_ (112)
dt ox dy)  fe, 0.p°T¢

dy éx O0x &y

These two terms express the only mechanisms (apart from non-adiabatic effects or
strongly accelerated flow) for a changing potential stability in a moving element of
air. The first term predicts that divergence (by which we mean horizontal, or more
strictly, isobaric divergence) will increase either potential stability or instability,
whereas convergence decreases both potential stability and instability. However,
such a process can never convert potential stability to potential instability, or vice
versa. Thus the final term is very important, since in an air mass with potential stability
everywhere it can create potential instability, under the appropriate conditions of
temperature and dew point gradients (on an isobaric surface). This term can be
considered to represent the effect of advection of dew point by the thermal wind (an
appellation applied to the vector shear of the geostrophic wind, the orthogonal
components of this shear being related to the thermal field by the set (109)).

To clarify this concept, let us recall that the (x, y) axes represent a right-handed
cartesian set of axes. Conventionally they are chosen, in meteorology, with x increasing
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to the east and y to the north. Since the orientation is really arbitrary, let us select the
x-axis as parallel to isotherms, with temperature decreasing in the direction of y
increasing (see Figure IX-19, in which solid lines represent isotherms and dashed
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Fig. [X-19. Synoptic situation conducive to creation of potential instability.

lines represent lines of constant dew point). From Equation (109), we see that the
thermal wind ‘blows’ in the direction of the positive x-axis (the wind component in
this direction increasing with height, with the orthogonal component constant with
height). From Equation (112), we see that decreasing potential stability (or increasing
potential instability) requires that 67,/dx be positive, i.e., that the dew point increase
in the direction of the thermal wind. In other words, the thermal wind must advect
drier air, essentially with a true advection proceeding more rapidly above the given
level than below. This synoptic situation is not uncommon east of the Rocky Moun-
tains in the United States, especially in summer, with maritime tropical air from the
Gulf of Mexico to the east and continental tropical air from the southwestern (arid)
states to the west. When a strong thermal-wind advection of drier air takes placein a
situation with general ascent to release the instability, hail and tornadoes often occur.

9.13. Radiative Processes and Their Thermodynamic Consequences

Let us consider first radiative processes near the ground, with clear skies. During most
of the daylight period, the earth’s surface gains energy by radiation, the solar radiation
absorbed exceeding the net loss of infrared radiation. This radiative energy gain is
dissipated in three ways — by heating of the ground, by heating of the air and by
evaporation from the surface. Frequently, it is possible to forecast the heat input into
the air, and from this energy (Q,) one may estimate the probable maximum tempera-
ture. Let us assume that the sounding at a time of minimum temperature, T, (p), is
known or can be estimated, and that the sounding at time of maximum temperature,
T,(p). is characterized by a dry-adiabatic lapse rate up to the level where diurnal
changes are small, as shown in Figure IX-20.
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Fig. IX-20. Effect of solar radiation on temperature stratification.

Let us define an element of area, 4, on the emagram in Figure IX-20, as
04A=— (T, — T,)d Inp. (113)
From the First Principle of Thermodynamics, the heat input into a cylindrical box
of unit cross-section for this infinitesimally thin layer is
) d
80, =~ T = T)L. (114)
g

Introducing Equation (113) into (114) and integrating over the entire atmosphere
(from surface pressure, p,, to zero pressure)
p=0

. J piA. (115)
g

3

Q.

P=Ps
From the Theorem of the Mean, this can be rewritten as

0.=254. (116)
g

A similar relation applies to any thermodynamic diagram. It will be recalled that an
area on such a diagram is equal to the work performed for a cyclic process undergone
by unit mass about that area. In this case we are not dealing with unit mass, but with
the entire lower atmosphere, so that the area, 4, is not simply equal nor proportional
to the energy input Q,.

After sunset, solar radiation need no longer be considered and the net loss of energy
at the surface due to infrared radiation must be balanced by fluxes down from the air
and up from the ground, the downward heat flux including that of latent heat asso-
ciated with condensation at the surface, visible as dew if the surface itself cannot diffuse
water into the ground at a sufficiently rapid rate. Since the lapse rate in the lowest
layers in the early morning hours depends on many complex factors, it is not fruitful
to attempt to forecast the appropriate area on a thermodynamic diagram comparable
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to A, above, nor to obtain the minimum temperature by such an approach. A direct
solution of the heat conduction equations is possible with appropriate simplifications,
giving a forecast of the minimum temperature at the ground (the most critical para-
meter for frost-damage assessment). If this temperature is expected to fall below the
dew point of the air, fog formation (radiation fog) is very likely. The effect of the resul-
tant condensation on air temperature and on liquid water content of the fog can be
estimated by the procedures of (Chapter VII, Section 5), or by their analytical analogues
(i.e., finding the isobaric wet-bulb temperature of supersaturated air rather than the
adiabatic wet-bulb temperature). From (Chapter VII, Equation (29)),

TW-T=i(r-rw), (117)

cpd

where T represents the expected minimum temperature (neglecting the possibility of
condensation), T,, the actual minimum temperature (with fog containing a liquid water
mixing ratio of (r—r,), r the saturation mixing ratio at the dew point temperature
(we assume T,>T) and r,, the saturation mixing ratio at the final temperature 7.
We may therefore state that

ar
r—r,=|—) (T; - T,). (118)
(“T)p(d )

(o

Introducing r, ~e&l,/p and the Clausius-Clapeyron equation, Equation (118) becomes

erl,

2
d*d

s

(Ti— ToJ- (119)

From Equations (117) and (119),

el?r
T, - T)+(Ty,—-T)=——(T,—T,).
( d ] ) Rafpdez(d
Thus,
. erl?
(G—TH Y— =~ 1) (120)
de d4d

From Equation (120), (7, — T.,) can be found, and then (r—r,), from Equation (119).
An estimate of the horizontal visibility may be made from the following table:

(r—r.)ingkg " 0015 0025 0065 009 0.5 0.25 0.35 0.65 1.8
Visibility in m: 900 600 300 240 180 120 90 60 30

Once a radiation fog has formed., it will tend to thicken as long as radiational cooling
of the fog plus ground can continue, since a dense fog acts as a black body as far as
infrared radiation is concerned. Thus the major further cooling takes place at the fog
top, and the maximum fog density may even be at some distance above ground level.
After sunrise, a dense fog may continue to cool since the solar radiation is largely
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reflected and little absorbed by the fog. The ground itself will commence to warm
slowly (as a result of the radiation transmitted through the fog), and the increased
turbulence will initially mix the fog near the ground. At times this process may actually
produce a further decrease in surface visibility shortly after sunrise. Eventually,
however, the rising surface temperature and the net gain of radiational energy by the
fog itself will lead to fog dissipation. For a thick fog, the fog will tend to dissipate
first at the surface, leaving a low layer of stratus cloud above. This cloud becomes
progressively thinner and less dense as the lower layers continue to warm, and disap-
pears completely when the level of cloud top (earlier, the level of fog top) has the same
potential temperature as the entire layer below.

Overcast cloud layers above the layer of diurnal temperature changes will normally
exhibit a net cooling as a result of radiative processes, although there may be a slight
gain of energy during the middle of the day. Since the cloud top acts as a black body
to infrared radiation (but definitely not to solar radiation), the atmosphere immediately
above the cloud behaves, for most if not all of the 24 h, like the air above the ground at
night, except that the analogue to fog formation is of course a cloud-thickening
process.

Finally, let us consider the consequences of radiative cooling of broken or scattered
clouds, particularly when relatively thin. For a given cloud height, the radiative
cooling rate is inversely proportional to cloud depth, to a first approximation. For
a thin cloud, this cooling rate may far exceed that of the air between clouds, so that the
cloud soon becomes denser than its environment and thus subsides, pseudo-adiabati-
cally, until it reaches equilibrium with the environment at a lower level. This process
normally continues until the liquid water content of the cloud is entirely depleted
and the cloud has dissipated:; this process is responsible for most cases of nocturnal
cloud dissipation, e.g., for scattered or broken stratocumulus, etc., in the early
evening. The net effect of the cooling plus subsidence is that the cloud descends along
the environment curve, but a number of different cases may arise, depending on the
ambient lapse rates and the cloud liquid water content.

Various possible cases will be illustrated by schematic tephigram curves. CS

T

Fig. IX-21. Radiative cooling of scattered or broken clouds. Case 1.
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sets a virtual limit very close to the dew point, an important fact in forescasting
minimum temperatures.

For an isobaric process, the heat absorbed is given by the increase in enthalpy
(Chapter IV, Equation (106)):

dqg =dh=¢,dT + 1, dr. (13)

 If we write r=ce/p, as p is a constant, dr=(g/p) de. In this case e corresponds 1o
: saturation, and we may apply the Clausius-Clapeyron Equation (Chapter IV, Equa-
~ tion (48)) and write e=e¢,,; we obtain:

drgide= El‘vewz dT [’16)

p PR, T

~and
2
Sg = (c,, i ”"e“‘z) dT, (17)
PR,T
or else
2

5q=(ﬂ-+fﬁ) de, . (18)

Fe. p

The relation between d Tand de,, is indicated in Figure VII-4, on a vapor pressure
diagram.

Fig. VII-4. Relation between the changes in temperature and in vapor pressure during condensation.

If we compute the heat loss — dq from other data (e.g.: radiation loss), Equation (17)
allows an estimation of the corresponding decrease in temperature —d7. Similarly,
the decrease in vapor pressure — de,, may be computed from Equation (18). From the
gas law, the mass of water vapor per unit volume is given by e, /R, T, and its variation
with temperature is de,/R,7T—(e,/R,T ?)dT. Introducing the Clausius-Clapeyron
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Case Illa, y, > 7 > 7, and r(T,) <r, (Figure IX-23). In this case (for which a
representative pseudo-adiabat is labeled as 8,,), the cloud does not dissipate completely
as it sinks. Instead, the cloud density decreases and the cloud reaches the ground as
thin fog patches. The increased turbulent mixing in this case, compared to cases I
and I[, could well lead to cloud dissipation by mixing with the environment air
(especially if the latter is relatively dry).

Case I1Ib, y,, > 7 > 7, and r(T;) > r, (Figure IX-24). In this case the cloud descends
only to P, where r,=r,. The cloud has dissipated at this point and the descending
volume is in equilibrium with the environment.

Fig. IX-24. Radiative cooling of scattered or broken clouds. Case I11b.

If y,, > 7, the atmospheric stratification is stable for ascent or descent of saturated
air, with or without a condensed phase. If y4 > 7 > 7,,, the atmospheric stratification
is stable for ascent or descent of unsaturated air, is unstable for ascent of saturated air,
with or without condensed phase, and is unstable for descent of saturated air con-
taining liquid water (or ice). Clouds'producad by convection (cumulus) or by vertical
mixing (stratocumulus) will have nearly dry-adiabatic lapse rates below the cloud, at
least during the active formation stage, and in addition it is possible to have 7> 7y,
below clouds produced by orographic ascent or by the general ascending motion
associated with the stratified clouds in cyclonic weather systems. In general, the liquid
water content at the base of all such clouds is small, so that descending motions trig-
gered by instability soon lead to dissolution of such cloud elements (within the drier
air below cloud base), but this does not contribute to dissipation of the cloud as a
whole if active formation processes are simultaneously in operation. Radiative cooling
of broken or scattered clouds under these conditions (which, we note, do not apply
to overcast layers) will accelerate the dissipation of the entire cloud system, and this
process is undoubtedly a potent one in the evening hours when the effects of convec-
tion and vertical mixing arc greatly reduced, i.e.. for cumulus and stratocumulus.

Case IVa, 7, > 77, and 8(P) > 6(S) (Figure IX-25). With slight cooling, the cloud
becomes unstable for descent and subsides rapidly to P, where it dissipates. The
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ex-cloud air at P is denser than the environment, and sinks dry-adiabatically to R,
where it is in equilibrium with the environment.

In&

T
Fig. IX-25. Radiative cooling of scatiered or broken clouds. Case 1Va.

Case IVb, y4> 7> 7, and 8(P) < &(S) (Figure 1X-26). As before, the cloud cools
slightly and descends rapidly along a pseudo-adiabat to P, where it dissipates com-
pletely. The ex-cloud air at P now sinks dry-adiabatically right down to the ground
(at R), producing local cool down-drafts.

T

Fig. IX-26. Radiative cooling of scattered or broken clouds. Case IVb.

We may now compute the total amount of heat (Q,) that must be lost by radiative
processes in order that the cloud may be dissolved or reach the ground, whichever
occurs first. During the first stage of the stepwise process, isobaric cooling accompanied
by latent heat release, the first principle of thermodynamics (cf. Chapter IV, Equation
(104)) gives, ignoring the heat content of the vapor and of the condensed phase,

8Q, =c¢,, dT, + I, dr, =¢,, dT, + I(gf;-) dT, . (121)
p

During the second stage of the stepwise process, the reversible saturated adiabatic
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descent (the process analyzed in Chapter VII, Section 8), we may approximate the
corresponding relation by neglecting the variation of /,/T, giving

¢,,dT, = R,TdInp, + [,dr, =0. (122)
Expansion of dr,, in Equation (122) gives
or, Ory
T /o ép/t

Let us now add Equations (121) and (123), and introduce 6 T=dT, +d7, as the tem-
perature change of the environment air for an infinitesimal pressure change, dp. Since
dp=dp,, it follows that
s e
5Q, = ¢,, 6T + 1, [("’—*) 6T + (ﬂ) fsp] —R,TéInp. (124)
cT/p opJt
Introducing the hydrostatic Equation (Chapter VIII, Equation (21)), and denoting by

or,, the change of saturation mixing ratio along the environment curve (for an incre-
ment d¢, of geopotential), we have

80, =c,, 6T + 1,6r, + 0. (125)

This equation can now be integrated over the layer from C to S (or C to P, in case
ITIb), treating /, as a constant and computing the change in geopotential by the method
of the mean adiabat (Chapter VIII, Section 11), i.e., from

sp = —c,, 8T,. (126)

Pa

The resulting value of @, is the heat which must be dissipated, per unit mass of the
cloud. This should be converted to the heat loss per unit area of the entire cloud, to
be consistent with the convention for radiative fluxes.

9.14. Maximum Rate of Precipitation

Let us consider now a unit mass of saturated air rising in the atmosphere. During the
ascent, vapor will condense into water (or ice); by imagining that all the water pre-
cipitates as rain (or snow), we may compute an upper limit for the possible rate of
precipitation. We shall proceed now to make this computation.

We start from Chapter VII, Equation (84) for the pseudoadiabats. Initslast term, I, can
be treated as a constant without much error. We then develop

d(&)zﬁ_hdh
T 7 0

multiply the whole equation by 7 and make the substitution R,7d Inp=—dg¢.
‘We then obtain:

[cw + (c,, == I—;-)P'w]dr +d¢ +1,dr, =0.
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Thesecond term within thesquare bracket usually amounts tosome unitspercentofc,, (it
reaches 107, at r,, = 0.02) and will be neglected in this approximate treatment. The
equation can then be rearranged into:

_dr, _ 1= (/7

(127
dé I :

where Equation (12) has been taken into account, as well as the fact that —d7/d¢ = 5,
in our case.

Equation (127) gives the condensed water per unit geopotential of ascent. We shall
now assume that we have a saturated layer d¢ thick, rising at a velocity U. The mass
of air contained in this layer per unit area is g dz=0J¢/gv.

We consider that the derivative with minus sign

_dr__dr,dg .
dt d¢ dt

expresses the mass of condensed water per unit mass of air and unit time. We have
also:
d¢  dz

g—=gU. (129)
dt dt

Introducing this expression and Equation (127) in (128), and multiplying by the mass
of air, we shall have the mass of water condensed (and eventually precipitated) per
unit time and unit area:

P=L_—!(@U5¢ (130)
U

P is here given, if MKS units are used, in kg m™2 s~ '. The mass of water precipitated

per unit area may be expressed by the depth that it fills, in mm. Taking into account
that the density is 10° kg m™3, 1 kg m™~? of precipitated water is equivalent to | mm.
If we further refer the precipitation to 1 h rather than to 1 s, we must multiply the
rate of precipitation by 3600 in order to have it expressed in mm h™"', as is common
practice in meteorology:

P=36001_—:?‘@U6¢’ G 1Y) (131)
where all quantities are in MKS units.

The coefficient of U d¢ in Equation (131) depends only on 7 and p, and so will P
for a given value of U and d¢. Therefore they will be defined for each point of a
diagram. We can then choose, for instance, U=1ms~ ! and d¢ =100 gpm=981J
kg™', and draw isopleths of constant P. If we are considering an ascending saturated
layer at (T, p), we can read P on the diagram, and this will give us the maximum
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precipitation rate for each m s™' of vertical velocity and each 100 gpm of thickness.

A similar computation may be performed for snow precipitation.
Figure IX-27 shows the shape of these isopleths on a tephigram. They are labeled

with the value of P and *S” or ‘R’ for ‘snow’ and ‘rain’, respectively.
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Fig. [X-27. Isopleths of maximum precipitation rate, on a tephigram. R: rain; §: snow.

Let us consider now a technique for the evaluation of the maximum rate of pre-
cipitation in terms of the distribution in the vertical of the vertical motion in isobaric
coordinates, dp/dz. This turns out to be particularly straightforward on a tephigram.
but could be adapted readily to any other thermodynamic diagram.

We may state, completely analogous to Equation (130), above,

i (132)
di g

where the integration is taken over the entire cloud layer (or layers) to give the pre-
cipitation rate in mass of water per unit time per unit area.
Introducing Chapter 1V, Equation (114) into Equation (122), we have

dr, T ds,
di [, dt

(133)

in terms of the dry-air entropy, s, — a basic coordinate of the tephigram. The time
derivative is that associated with the pseudo-adiabatic process, which implies that

ds — (@) dp (134)
dt ap /e, di
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Substituting Equations (133) and (134) into (132), we obtain the required integral,
which may also be expressed as a summation over finite layers, e.g.,

=)ok ac\aph, 2 = 2 G ) oen 135
J.g'r\' dt (ap Bw P Z giv dt ( Td}llw ( )

where mean values are employed of 7//, and of dp/dt for each layer, and where
(4sy),,, Tepresents the dry-air entropy decrease along a mean pseudo-adiabat down-
ward through the layer in question (we note this can be read off directly, on a tephi-
gram, and is by definition a negative quantity).

In practice, isobaric vertical motions can be deduced from numerical weather
prediction calculations, in either a diagnostic or prognostic mode (in the latter case,
a prognostic sounding would also have to be employed, plus an indirect estimation
of thé depth of saturated layers). In theory, at least, we could employ observed rates
of precipitation in order to verify the accuracy of computation of vertical motions.
This is not a satisfactory procedure, however, since precipitation amounts are seldom
representative, and a few rain gauges do not constitute an adequate sample of a large
area for quantitative purposes. If instability phenomena are present, and their
existence is not always obvious from synoptic weather data, the above equation will
seriously underpredict precipitation, and in this latter instance horizontal variability
will be large and random, increasing the difficulty of verification. Moreover, it will
seldom be obvious from vertical soundings what was the precise vertical extent of the
cloud layers (even if verification is being carried out with diagnostic vertical motions).
Finally, the assumptions made (constant cloud properties, no evaporation below the
cloud) could seldom be justified in individual cases. Thus, the equation for P is
useful chiefly for semi-quantitative prediction for a large area.

9.15. Internal and Potential Energy in the Atmosphere

The Earth as a whole is in a state of radiative equilibrium, in which the solar radiation
absorbed is compensated by emission to space, essentially as infrared radiation corre-
sponding to surface and atmospheric temperatures.

Between absorption and emission, however, there is a complicated pattern of
energy transformations. The heating by the Sun causes an increase in the specific
internal energy of the atmospheric gas. As the gas expands due to the increase in
temperature, it lifts the mass center of any vertical column that may be considered;
this implies an increase in potential energy. There is also a partial transformation of
the radiant energy received into vaporization enthalpy. The internal and potential
energies may be partially transformed into kinetic energy of motion of large air masses,
into turbulence energy, into mechanical work over the Earth’s surface and finally into
heat. The last conversion implies again an increase in internal and potential energy,
thus closing a cycle. Other transformations between these different forms of energy
are also possible. Differential latitudinal heating and horizontal transport are implied
in this complex picture.
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We have the following basic types of energy in the atmosphere: (1) potential
(gravitational), (2) internal (thermal), and (3) kinetic. If we consider the approximate
formulas Chapter IV, Equations (111) and (105):

u=c, T+ Ilq+ const.
h=¢,T + l,q + const.

wecanseethattheinternalenergy and theenthalpy willeachincludeaterm proportional,
at every point, to the temperature, and another due to the vaporization heat of its water
vapor content. Itis customary to refer to the former as ‘sensible heat’, and to the latter as
‘latent heat’. The kinetic energy can appear in large scale motions, in vertical convection
or in a whole spectrum of eddies.

Here we shall only consider the expressions of potential and internal energy, their
inter-relation and their possible transformation into kinetic energy of vertical motions.
Moreover, we shall only consider in the internal energy and in the enthalpy the term
proportional to the temperature, as we shall not study the more complex case when there
are water phase transitions. We shall call U, P and K the internal, potential and kinetic
energy, respectively, and H, as usual, the enthalpy.

Let us consider a vertical atmospheric column of unit cross section, in hydrostatic
equilibrium, extending from the surface (z=0) to the height A. Each infinitesimal
layer dz has a mass ¢ dz and the internal energy ¢, 7o dz*. We shall have for the
column (introducing the hydrostatic equilibrium equation Chapter VIII, Equation(19)):

h tb Po
U=¢, | Todz =" J ¢=—J T dp (136)
T} 0 Ph

where the small variations of ¢, and R with humidity and of g with altitude are
neglected.

The same integration can be performed for the enthalpy. It is easily seen that
H=qU.

For the potential energy:

b
P=J¢Qd:= Jg:dz=szp, ) (137)

Integrating by parts and introducing the gas law:

v

i R
P=—p,,h+RJ oTdz=—ph+—U=—ph+(n—-1DU. (138)
0

* We are taking for convenience the arbitrary additive constant as zero, which amounts to considering
as reference state one obtained by extrapolation of the formula u = ¢,Tto T =0 K.
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If the column extends to the top of the atmosphere, p,=0 and Equation (138)
becomes

P=(n-1)U (139)

a proportionality which must always be obeyed, provided there is hydrostatic equi-
librium. As n=7/5, we have the relation

P:U=2:5. (140)

[f the column receives heat from external sources, it must become distributed between
the potential and the internal energy in the same proportion; i.e., 2/7=29% must go
to increase P and 5/7=71% to increase U.

If we add both energies for such a column, we obtain

P+U=nqU=H (141)

where the last equation results by considering that #U is given by expressions similar to
Equation (136), but with ¢, instead of c,, in the coefficient. Thus, for a column in
hydrostatic equilibrium extending in height to negligible pressures, the total enthalpy
is equal to the sum of the internal and potential energies, and to 7 times the internal
energy. Obviously, any energy received from external sources produces an equivalent
increase in the enthalpy.

Now let us consider an infinite column divided, for the purpose of the discussion,
into a lower part extending from ground to z = hcorresponding to a constant given P, and
with energies P, U, and an upper part, from z = hupwards and with energies P’, U’ (see
Figure IX-28). Let P, U, be the values for the total column. The lower part must obey
Equation (138). For the upper part, performing the same integration, but this time
between the limits z = h and z = oo (viz. from p = p, to p = 0), we arrive at

P =pgh+(—DU". (142)
The sum of Equations (138) and (142) gives

P+P =(n—-1)(U+U" (143)
ie.,
P =(n-1DU, (144)

which is again the Equation (139), as applied to the present case. We notice now that
for a process which does not alter the atmospheric structure above P, (such as absorp-
tion of heat by the lower part), U’ remains constant, while P’ changes because of the
change in /:

AP' = p, Ah (145)

where p,,, which represents the weight of the whole column of unit cross section above
theinitial level h, must remain constant. That is, the change in P’ is equal to the change in
potential energy that would be experienced by a solid weight p, (per unit cross section)
resting on top of the lower part of the column, as this top is raised by 4h.
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Fig 1X-28. Internal and potential energy of an atmospheric column.

From Equations (138), (144), and (145),
AP, = A(P + pyh) = (n — 1) AU . (146)

Summarizing, any energy input will go entirely to an increase AH, = A(P, + U),from
which the fraction 5/7 goes to AU and 2/7 to AP,; from this latter portion, p,, Ah gives the
increase AP’ and the rest goes to 4P.

If we now consider an adiabatic process in which there are no motions with a
component normal to the limiting surfaces of the system, and we neglect the work of
external friction forces, we must have

A(K+P,+U)=0 (147)
AK = —A(P,+ U) = —ndU = — AH. (148)

That is, the kinetic energy that can be produced is given by the decrease in the sum
H, = (P, + U)when passingfrom theinitial to thefinalstratification. Thisisthemaximum
value attainable in principle, as no real process will be strictly adiabatic; there will be,in a
larger or lesser degree, simultaneous reconversion of kinetic into internal and potential
energy through frictional dissipation.

9.16. Internal and Potential Energy of a Layer with Constant Lapse Rate

Let us consider an atmospheric column in hydrostatic equilibrium with a thermal
gradient y = const., extending from z = 0 to z = h. Using the equations, Chapter VIII,
Equation(37)and Chapter VIII, Equation (40)tointegrate the second expression (136) of
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U, we obtain:

¥ (h‘R'rHl%
"¢
= c“’;" : (149)
gRy RN
Ry °
—L(p To — puTy)
g(l-l—R’P) 040 h 3

where real temperatures and gradients are used, instead of the virtual ones.
For the particular case of an adiabatic layer, y=1/c, and Ry=x. We then have

C
=——(PoTo = PvT1)
g(l+x) 040 h

O T ) (150)
g(2n—1)

And, writing the temperature in terms of the pressure and the potential temperature
%=9C@J; R=9C&J
Poo Poo

C\"B - ® 4
T il -
o0

we obtain

where pye = 1000 mb. Therefore, for an adiabatic layer and given p, and py, the internal
energy is proportional to its potential temperature, 6.

9.17. Margules’ Calculations on Overturning of Air Masses

Margules used the previous formulas to calculate the change in potential and internal
energy and to estimate the possible production of kinetic energy, in the following
idealized case.

We shall assume two air layers of unit cross section, superimposed, both adiabatic,
with the potential temperature of the upper layer 6, smaller than that of the lower
layer 0, , so that the system is unstable. p,. p,, and p,, are the pressures at the bottom
of the column, at the interface between the two layers and at the top, respectively
(see Figure IX-29).
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Fig. 1X-29. Overturning of two adiabatic layers, according to Margules.

We assume now that an overturning takes place, by which the two layers exchange
positions, but without any mixing taking place between the air masses. It is easy to
see that the pressures at the bottom and at the top will be the same, but at the interface
between the two layers it will now be (py, +p, —p,,), because this surface is holding the
weight of the atmosphere above the whole column, given by p,, and that of the layer
@, , given (from the initial state) by p,—p,..

We now apply Equation (151) to calculate the initial (U;) and final (U;) internal
energies of the system

C\'

= e L™ = Pa™) + 6P — pi™)] (152)
S IE00

c\'

U = 6 ( e _ m)1+1_px+l 4
f a1 + 2Poo { 1[(Pn+Po—p Sl |

+60,[p5™" — (py + Po— P ']} - (153)

The variation of U in the overturning will therefore be:

Cy

T,
P R

X[(pa+pPo— P +pa " —ps =], (154)

which can also be written:

Cy Po \ P\ P\
gl en(2) ()
g(1 +x) (Pno) s : i 2 Po Po

— (Po + Pn — Pw) (p——ﬂ 2 ;h — Pm) ] (155)
0

In the case of layers of moderate thickness, so that p, and p, do not differ greatly,
the following approximations can be made in Equation (155):

(pi) =(I+——p_p°) =14x2"P0y o~y pxB P
o Po Po Po
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Introducing this simplification, Equation (155) becomes:

AU ~ _ﬁ(ﬂoo)“’w1 _ 0, Po = Pu) (P — P)

g \ po

(156)

Poo
with
c X R R
8= =

T14x p(l4x -1

Equation (156) shows that the change in internal energy will be proportional to the
difference of potential temperatures and to the product of the pressure thicknesses
of the two layers. The same proportionality will hold, according to Equations (146)
and (148), for AP, and for 4K, with the appropriate change of coefficients. In par-
ticular:

4K

;Eﬂ_(%o)l”(gl_gz) (Po — Par) (P — P1) (157)

g _P: Poo

This is the maximum value of kinetic energy that can be produced, in principle, during
the overturning; if the total system is isolated, this kinetic energy will finally dissipate
again into internal and potential energy (with changes in 6,, 0, or both). We can use
the value obtained in Equation (157) to compute the velocity W related to it by

4K = IMW? (158)

where M=(p,—p,)/g 18 the total mass (per unit cross section). As this is such an
idealized model, we are only interested in the resulting order of magnitude. For
layers 100 mb thick, with potential temperatures differing by 10°C, we obtain W=
=21 ms™*; with200 mb, W=30 m s '. This is the order of magnitude of the strongest
updraughts in storms, but we must remember that in real storms there is condensation,
the updraughts are localized over certain areas, and the whole process is much more
complex and implies a great deal of turbulent mixing.

Computation shows that the values of AK are only a small fraction of U. For instance,
with 6, = 300K, 6, = 290 K and 100 mb thick layers starting at 1000 mb, 4K is about
920 times (and AU about 1290 times) smaller than U = 4.2 x 10® Jm 2.

Margules also calculated the variation of potential and internal energy for the case of
adjacent layers, as shown in Figure IX-30, and obtained similar results.

62
8

Fig. IX-30. Overturning of adjacent adiabatic layers.

6 92"9| S

9.18. Transformations of a Layer with Constant Lapse Rate

Let us consider a layer extending from z=0 to z=h, with a constant lapse rate which
in general will be different from y,. Its internal energy will be given by Equation (149).
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We shall only consider qualitatively the processes that may occur in this layer.

(a) If vertical mixing takes place, the resulting potential temperature will be uniform
and given by the weighted average 6 through all the layer (cf. Chapter VII, Section 12).
The initial lapse rate is y and the final one is the adiabatic lapse rate y,. It may be
shown that according to whether y=2y,, the variation of internal energy will be
AU $0. Thus, if the layer had a superadiabatic lapse rate, the mixing may occur
spontaneously, with a decrease in potential and internal energy, and the layer will
acquire an adiabatic lapse rate. In this case, there will be a surplus of energy which,
assuming that the process occurs without exchange with the environment, will be first
transformed into kinetic energy and then dissipated into heat by turbulence. The final
potential temperature of the layer will be such as to maintain the initial value of U and
P. If y=174, the layer is in neutral equilibrium with respect to vertical exchanges.

If y <74, the layer is stable; in order to produce the vertical mixing, which occurs
with an increase in potential and internal energy, the layer must absorb energy from
external sources.

(b) Littwin considered another ideal process in a layer with uniform superadiabatic
lapse rate y.: the total orderly overturning of the layer, in such a way that the strati-
fication is inverted, with the highest layers passing to the lowest positions and vice-
versa. The final gradient y, is subadiabatic. During the overturning, each infinitesimal
layer follows a dry adiabat to its new location. Tt is assumed that no mixing occurs.
The process occurs with decrease in potential and internal energy. Figure 1X-31
illustrates this case; it may be noticed that a discontinuity has been assumed at p,,, to
indicate that the upper part (stable), does not participate in the process.

o

Fig TX-31. Overturning of a layer with a superadiabatic constant lapse rate.

As Margules did, Littwin computed the kinetic energy corresponding to the
decrease in (P,+ U), and from it, the mean velocities attainable during the overturning,
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with results of the same order as of the Margules calculation, i.e. similar to our results
based on Equation (158).

Obviously Littwin’s process, although more elaborate than Margules’, still is an
unrealistic idealized model. Particularly, the condition of absence of mixing will not
hold in the atmosphere. Real processes will be intermediate between (a) and (b), and
in particular for local convection they may be closer to case (a); actually we have seen
that convection caused by ground heating during strong insolation leads to thorough
mixing and an adiabatic lapse rate in the lowest layers.

9.19. The Available Potential Energy

As we have alrcady remarked, the pioneering calculations of Margules were aimed at
understanding the source of the energy of storms and based on crude models. rather
inadequate when considered as a local representation of strong convective processes.
But the same concepts have been carried over to large-scale motions, mainly by Lorenz.
where they find fruitful application and can be related to the problems of the general
circulation and of the energy conversions in the atmosphere. We shall not develop his
theory. which would be beyond the scope of this book. but shall mention briefly the
basic ideas and indicate how the concepts of the previous sections can be generalized.

Again we shall restrict consideration to processes in which condensation plays no
role (or its role is minor and can be ignored) and shall assume that conditions of vertical
hydrostatic equilibrium are essentially valid everywhere. Equations (136) to (141) are
thercfore applicable over cach particular location. If we now integrate the expressions
of U and P for columns extending to the top of the atmosphere (i.c.. to p = 0) over an
extended surface or over the whole surface of the earth, we shall have the total values of
U and P for that extended region or for the whole atmosphere. respectively. It is
customary, in the context of the present problem to call the sum (P + U) the total
potential energy. It must be stressed. however, that as Equation (141) 1s valid at every
location, it is also valid for the integrated value over the whole surface under
consideration; therefore the total potential energy is identically the total enthalpy
H=P+ U.

We shall define adiabatic motion (or more generally adiabatic process) as a motion (or
process) in which entropy, and therefore potential temperature, is conserved for every
parcel of air.

Atmospheric motion is not in general adiabatic; friction over the ground surface or in
theairand mixing are nonadiabatic processes. However, friction is the only nonadiabatic
process which directly alters the kinetic energy, destroying it and generating internal
energy. The remaining nonadiabatic processes alter only the internal energy directly. So
the only source of kinetic energy K in the atmosphereis H = P + U.

The advantage of considering adiabatic flows resides in that, in spite of the previous
remarks, they represent a good approximation to large-scale motions in the at-
mosphere.

In an adiabatic process, an air parcel moves on an isentropic surface, i.e., a constant ¢
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surface. If the parcel is to be accelerated, there must be a pressure gradient on the
surface; without it, the kinetic energy of the parcel will remain constant. Therefore, in a
situation where constant p surfaces and constant 0 surfaces coincide, there can be no
conversion of H into K, no matter how large H is. The question that becomes important
then is what is the portion of H that can be converted into K. This is indeed a very
difficult question.

An easier question, however, can be asked. For a given state of the atmosphere, what
is the minimum value of the total enthalpy (or total potential energy) that can be
attained by an adiabatic redistribution of mass in the atmosphere? We call this
minimum value H,, and we define now the available potential energy A as the
following difference:

A=H - H (159)

min®

It will be noticed that we are considering now for the whole atmosphere (or a large
portion of it) a process similar to the local adiabatic overturnings of Margules and
Littwin from an initial, unstable stratification to a final stable one, where U and H have
minimum values.

The advantage of defining A4 in this manner lies in that it separates the part relevant to
the production of air motions from the much larger bulk of total enthalpy, mostly
unavailable for conversion into kinctic encrgy. The convenience of doing so can be
appreciated in the following two examples: (a) in an atmospherc with horizontal,
hydrostatically stable stratification, however large H may be, 4 = 0; (b) on the other
hand, removing heat differentially from this atmosphere will decrease H, but will create
A > 0, causing instability (i.e., will decrease H;, more than it does H).

It is clear that the available potential energy has the following properties:

(1) (4 + K) is conserved under adiabatic flow,

(2) A is completely determined by the distribution of mass.

(3) A =0 if the stratification is such that constant p and constant € coincide

everywhere.

(4) A > 0if constant p and constant ) surfaces do not coincide.

According to property (1), A can be considered as the only source of kinetic energy:

AA + K)=0. _ (160)

Equation (160) is the generalized equivalent of our previous Equation (147). It 1s
important to recognize that, for a given situation, not all of 4 may be converted into K
in the real atmosphere, becausc the redistribution of mass required to achieve H ;, may
not satisfy the equation of motion. The available potential energy 4 merely gives an
upper bound for the enthalpy to kinetic energy conversion. In fact, it can be estimated
that typically only about 1/10 of the total enthalpy of the atmosphere is transformed
into kinetic energy. As the available potential energy is found to be of the order of 1,200
of the total enthalpy, only about 1,/2000 of the latter transforms into K.

Equation (147) indicates that 4 is the only sink for K in adiabatic flow, but, as
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mentioned before, in real flows friction will dissipate part of the kinetic encrgy,
producing an increase in H,;, but not in A4.

Now let us derive an explicit expression for A.

Since 0 increases monotonically with height (according to the assumed stable vertical
hydrostatic equilibrium), we shall use ¢/ instcad of p or z as the vertical coordinate. p(x. 3,
/) may be considered as the weight of air with potential temperature exceeding 6, at x, y.
This is true even if 6 < 8, where 0, is the surface potential temperature (i.e., extending
formally the range of the variable 6, to underground locations), provided that we define
plx. v.8) = pylx, v), where p,, is the surface pressure, for 8 < 8,

The average of p over an isentropic surface of area S 1s

1 ol
) = J plx., v.0) dS (161)
S
pis conserved under adiabatic redistribution of mass, because Sp gives the total weight

of air with potential temperature exceeding ). which is conserved.
The total enthalpy for the area S is

Po PO
H=5”pods: 1 j Op*dpds
4 4Poo J J
S0 50
Pii _
:cipA—[[l‘(}dp”ﬁ ds (162)
gl +%)pse . N
5 V]

where pyo = 1000 mb and ¢, and ¢ are considered as constants. Let us discuss the
integral between the bracket: solving by parts:

o ¥
Pu
J\Hdp1+t:8pl-rr _J.pl-r?dti
] ¢ i
= opo " — fp“"dﬂ (163)

LI

where the lower limit value of the first integral at the right-hand side has been set cqual
to 0 because p decreases with height more rapidly (essentially as an cxponential
variation) than ¢ increases. Now, according to the condition mentioned above for the
extension of the range of #, p remains constant and equal to p, for 8 < (,, so that

[}
Ooph +* = J p*edo (164)
4]
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and (163) becomes
o x
j Pdpt = jp‘" do.
0 0

Introducing (165) into (162):

o jjp‘”dﬂd&
g(l + "]Poo

(165)

(166)

Now H,,;, can be achieved by rearranging mass in such a way that pis constant on the
isentropic surfaces, and this constant p should be equal to the earlier defined p, because

p is conserved under adiabatic processes. Therefore

ao

¢
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We can write

p=p+p

where usually p' < p; this allows us to make the approximation

A E T
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p

which, introduced into (168), gives
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(167)

(168)

(169)

(170)

(171)

The first integral within the bracket vanishes, as can be readily seen by replacing p’ from
(169), integrating first over the surface (p being a constant for this integration) and

considering (161). Equation (171) reduces therefore to
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2
” (”—) de ds. (172)
291900

If we want to express A in terms of temperature, we write

T=T+T (173)

where T, the average temperature over an isentropic surface. is defined in a similar way
to p (Equation (161)) and T’ < T. On each isentropic surface, we have the relations:

T=H( 4 ) :G(i)(l +pT) ;T(l +x”—). (174)
Pao Poo p P

pn’_ITI
p % T

Therefore

(175).

which, introduced into (172), gives finally
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Let us consider an example based on a simplified model. We assume a rectangular
surface of length Land width W. We take the variable x along the length and y along the
width. All parameters will be assumed independent of y.

Figure IX-32 shows a plot of constant p surfaces in the x, # plane. With respect to the

'gll
e ISENTROPIC SURFACE
T IO =
i CBARC SUREAcE — —
Bn i~ = — -
0 L/2 L X
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horizontal isentropic surfaces, the isobaric surfaces are assumed to be inclined with a
constant slope, according to the linear variation

p(x,0) = p(%,ﬂ)[l + s(l - 2%)] (177)

where s is a constant determining the slope. We further assume that the lapse rate is
constant throughout the atmosphere at x = L/2, with a value y. The air is assumed dry
for convenience (or humidity corrections are neglected). The solution of the example is
left to Problem 18. Here we shall only give the results, assuming the following
parameters. The surface pressure at the midpoint is py(L/2, 8,) = 1000 mb, the surface
potential temperature is 6, = 300, K,y = 6.5 K gpkm ™! and s = 0.15 (which means that
the pressures on the isentropic surface 6, vary up to + 150 mb). The calculation shows
that the available potential energy and the total enthalpy, referred to unit area, are:

A =356 x10°Tm 2, H=258x10°Tm 2
and
A/H = 1/725.

PROBLEMS

1. Prove that the work of expansion of an air parcel ascending adiabatically and
quasi-statically may be expressed by the following formula:

T
dn= =2
nT.
where T, is the temperature of the environment, n=c,/c,, and a is referred to unit

mass.
2. From the following sounding

p(mb) T("C) U, % p(mb) TC°C) Uy %
920 24.0 68 568 = 42
900 22.5 70 545 — 20 . 49
850 20.0 83 500 — 8.0 b7
800 15.8 83 400 —19.5 1
765 13.0 92 300 —33.0

735 12.8 55 250 —41.5

700 10.0 54 200 —54.0

645 5.8 55 150 —65.5

600 3.0 32

(a) Compute the positive and negative instability areas for a surface parcel, on a
tephigram.
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(b) Compute the same for a parcel at 600 mb.

(c) Determine the thickness (base and top pressures) of the layer with latent
instability.

(d) Determine the lifting condensation level (LCL) and the free convection level
(FCL) for a surface parcel.

(e) Compute the instability index, defined as the temperature of a parcel from
850 mb when taken to the 500 mb level minus the temperature of the atmosphere
at the same level.

(f) Assuming that after the time of the sounding and due to insolation, the lower
layer absorbs heat from the ground and cumuli start developing, what will be
the level of the cloud base?

3. Given the following temperature sounding

p(mb) T(C)
950 22.5
900 18.0
850 15.0
800 16.0
750 12,0
700 7.0
650 4.0
600 — £5
500 —10.0
400 —20.0

and knowing that the dew-point at the surface (950 mb) is 15.7 °C, plot the sounding

on a tephigram and

(a) Determine, using the tephigram, the mixing ratio r, the relative humidity U,,
the potential temperature 6, the wet-bulb temperature T,,,, the potential wet-
bulb temperature 6,, and the potential equivalent temperature 6,  for a
surface parcel. Mark the relevant points on the diagram. Compute the isobaric
wet-bulb temperature T, and equivalent temperature T, .

(b) Determine the lifting condensation level and the free convection level for a
surface parcel. What can you say of the conditional instability of surface
parcels ?

4. Plot the following points on an aerological diagram:

p(mb) T(°C) r(gkg™")
1000 17.0 10.0

900 ~ 9.0

850 8.0 6.0

800 - 3.8

700 - 45 =

500 —20.0 =

300 —35.0 -
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Join them by straight lines for each variable, and assume that the two representa-
tions obtained correspond to an atmospheric sounding. Find the potential tempera-
ture #, the wet-bulb potential temperature @, the lifting condensation level
(LCL), the saturation temperature T, and the free convection level (FCL) for a
ground (1000 mb) parcel, and mark on the diagram the negative and positive
areas of instability for vertical parcel displacement. Find the convective condensa-
tion level (CCL). Indicate the layer with latent instability.

5. The vertical distribution of temperature and humidity (mixing ratio r) of the
atmosphere over a certain location is given initially by the following data:

p(mb) T(°QO) rigkg™")
1000 20.0 11.5

850 12.0 9.0

700 2.0 5.0

600 — 5.5 2.5

500 —14.5 1.5

Radiative heating of the ground results in the development of convection, attain-
ment of the convective condensation level (CCL) and cumuli formation. Using a
tephigram, find:

(a) The lifting condensation level (LCL) for a ground parcel before the heating,
and the CCL.

(b) The dew point, the pseudo-wet bulb temperature and the potential pseudo-
wet bulb temperature for ground parcels before and after the heating.

(c) The approximate vertical velocity acquired by an air parcel in a cumulus at
600 mb, as predicted by the parcel theory. Assume that the initial velocity at
the CCL is negligible and use the area equivalence given for the diagram.

(d) Indicate the layer with latent instability at the initial time (before the heating).

6. Given the following data:

p(mb): 1000 900 800 700 600 500 400
TCC: 25 18 10 2 —45 —12 -20

and knowing that the relative humidity at the ground (1000 mb) is 60%, and that the

mixing ratio has an average value of 4 g kg~ ! between 600 and 800 mb;

(a) determine, on a tephigram, the values of the following parameters for ground
parcels: adiabatic potential wet bulb temperature 6,,,, dew point temperature Ty,
lifting condensation level (LCL) and free convection level (FCL).

(b) What type of conditional instability do these parcels have?

(c) On a separate tephigram, compute the thickness of the layer between 800 and
600 mb, in a single step, both by the method of mean temperature and of the
mean adiabat. (Use the tephigram as if it were a skew emagram.) Express the

results in gpm and in m? s ™2,
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. The potential pseudo-wet bulb temperature decreases with height through an

atmospheric layer (86,,,/6z < 0). What comments can you make on its vertical
stability, if the layer is saturated? And if it is not saturated?

. An unsaturated air mass is ascending through the isobar p. Due to radiant heat

exchange, the virtual potential temperature increases by 2.8 K gpkm !,
Determine the state of stability of the atmosphere at that level if its (geometric)

virtual temperature lapse rate is 7.3 K gpkm, and

(a) if p = 800 mb;

(b) if p = 500 mb.

. A vertically ascending air particle is receiving some heat. The temperature of the

particle is increasing by 0.0134 K m ™. Determine

(a) the polytropic exponent n and

(b) the heat flux.

A parcel of unsaturated air is receiving heat from the surroundings through heat
conduction a rate of dg/dz during its ascent. The virtual lapse rate of the
atmosphere is 5 K gpkm ~'. Determine the stability of the atmosphere for this
situation, when

(a) 6g/dz=2calkg ' m™!

(b) 6q/dz=1calkg 'm '

An air particle, warmer than the surroundings by 10 K, is moving upwards. Doing
so it receives some heat due to absorption of long wave radiation. How far will the
particle move, if the temperature lapse rate in the atmosphere is 6 K gpkm ! and
the particle receives heat according to the polytropic law pv” = const, with
n=153?

Anair massis ascending. Theinitial pressureis 1000 mb and theinitial temperature is
290 K. Due to radiant heat exchange its potential temperature is increasing at the
rate of 3.45% per kilometer. How much heat per unit mass does the air receive in the
first 100 m of ascent?

. A saturated layer 300 m thick is ascending at 2 ms~' at the level of 850 mb. Its

mean temperature is 20 °C. What is the maximum rate of precipitation that can be

expected from it?

Consider a column of atmospheric air extending upwards to negligible pressures

with a constant lapse rate y=5 K gpkm~'. The pressure and temperature at the

ground are: p,= 1000 mb, T,=300 K. Compute its total internal energy, potential

energy and enthalpy, per unit cross section. Neglect variation in the acceleration

of gravity (g=9.8 m s~ 2); the air is unsaturated everywhere and can be considered

as dry air.

Consider an adiabatic layer of dry air, extending from 500 to 400 mb. The tempera-

ture at the base is 0°C.

(a) What is the thickness of that layer, in gpm?

(b) Compute the differences in specific internal energy w, enthalpy A, and entropy s,
between parcels at the base and at the top.

(c) What is the total internal energy of a column of that layer with unit cross
section?



