
On the Dynamic Interpretation of the Virtual Temperature

EVA MONTEIRO AND ENRICO TORLASCHI

Centre pour l’Etude et la Simulation du Climat à l’Echelle Régionale (ESCER), Département des Sciences de la Terre et de
l’Atmosphère, Université du Québec à Montréal, Montreal, Quebec, Canada

(Manuscript received 24 July 2006, in final form 20 November 2006)

ABSTRACT

The concept of virtual temperature is reviewed and extended into the definition of the dynamic virtual
temperature, which is the temperature that a parcel of dry air should have in order to experience the same
acceleration as a parcel of cloud air. It is obtained from the equations of motion and depends on the water
content in the three thermodynamic states: vapor, liquid, and solid. The scale analysis of the equation of the
dynamic virtual temperature shows that the terms due to the acceleration and phase transitions of the
particles are negligible with respect to the terms depending on gravity. Therefore, even though conceptually
more adequate, the approximate mathematical expression of the dynamic virtual temperature is practically
identical to the conventional definition of virtual temperature accounting for water loading.

1. Introduction

The concept of virtual temperature has been intro-
duced in meteorology to account for the dependence of
air density on water vapor content and represents the
temperature of dry air that has the same density as a
parcel of moist air at the same pressure (Guldberg and
Mohn 1876; Dufour 1963; cf. Curry and Webster 1999).
The virtual temperature is then used in the computa-
tion of the buoyancy force.

Saunders (1957) generalized the concept of virtual
temperature to cloudy air. He assumed that the ob-
served decrease of buoyancy of cloudy air was related
to the increase in air density due to the presence of
hydrometeors. Therefore, Saunders’ cloudy virtual
temperature represents the temperature of dry air hav-
ing the same density as a cloud composed of moist air
and condensed water at the same pressure. Since then,
this temperature has been largely used to calculate the
convective available potential energy (CAPE) in sev-
eral convective models as well as to establish the ver-

tical stability in the atmosphere (Emanuel 1994; Curry
and Webster 1999; Jacobson 2000).

In the definition of cloudy virtual temperature the
acceleration of the air and the hydrometeors, the varia-
tion of momentum due to hydrometeor interactions
and phase transitions have been ignored even though
the influence of the condensed water on the vertical
motion of moist air is rather a consequence of the mo-
mentum exchanges between moist air and water par-
ticles as the studies on cloud dynamic and precipitation
demonstrate (Ogura 1963; Arnaldson et al. 1968; List
and Lozowski 1970; Clark and List 1971). Recent text-
books are aware of the importance of hydrometeor
drag, which is introduced in the vertical motion equa-
tion for moist air as a force proportional to the weight
of water particles, the so-called liquid water loading
(e.g., Cotton and Anthes 1989; Houze 1993; Emanuel
1994). Bannon (2002) considers the assumptions under-
lying the estimate of the hydrometeor drag force by
their weight and proves the pertinence of this approxi-
mation. He obtains the dynamic and thermodynamic
equations for cloudy air as a multiphase, multitempera-
ture, and multivelocity system allowing transitions be-
tween water phases and assuming the dynamic equilib-
rium of the water particles falling at terminal velocity.
He shows that the net microphysical momentum forc-
ing of the moist air is mainly due to the drag force and
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to the momentum exchange associated with phase
changes.

On the one hand, Bannon’s vertical momentum
equation for moist air includes all the important physi-
cal phenomena at play, but, on the other hand, the
definition of virtual temperature, largely employed to
calculate the buoyancy force, is based on a simplified
and unphysical representation of the phenomenon sug-
gesting the idea of a change in the bulk density of air
due the presence of condensed water. The objective of
this work is to clarify the physical meaning of virtual
temperature defining it as the temperature of the dry
air that has the same acceleration as the moist air sur-
rounding the water particles at the same pressure. This
temperature accounts for the influence of water (vapor,
liquid, and solid) on the vertical acceleration of the air
and is deduced from the vertical momentum equation
for moist air.

Following Bannon (2002), in section 2, we present
the momentum equation of the moist air as part of a
multicomponent and multiphase flow. In section 3, we
define the virtual temperature according to this equa-
tion. A scale analysis is then performed in section 4 to
evaluate the order of magnitude of the terms depen-
dent on the condensed water.

2. Basic equations and assumptions

a. Virtual temperature for cloudy air

According to Saunders (1957), a cloud parcel is seen
as a heterogeneous closed system formed by dry air,
water vapor, and condensed water. By definition, the
virtual temperature for cloud air, T�,c, is the tempera-
ture required for dry air to yield the same density as
cloudy air and is given by (cf. Emanuel 1994)

T�,c ≅ T�1 � 0.608q� � qw�, �1�

where T is the air temperature, q� the specific humidity,
and qw the condensed water mass per unit mass of moist
air. This definition of T�,c is based on the premise that
the hydrometeors are tied to the moist air and that
buoyancy decreases because of the increase in the air
density.

b. Momentum equation for the moist air

Bannon’s (2002) Eq. (5.15) identifies the main terms
linked to the contribution of water to the acceleration
of moist air. The derivation of this equation assumes
that 1) moist air is a mixture of dry air and water vapor,
two ideal gases; 2) the diffusion velocity of water vapor
relative to air is negligible; 3) the volume filled with the
dispersed phases is small compared to the total volume

of the system; and 4) the hydrometeors are in dynamic
equilibrium. The generalization of this equation for any
population of hydrometeors of different sizes and
phases gives
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Du
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where u is the moist air velocity, �a the density of dry
air, g the gravity acceleration, r� the mixing ratio of
water vapor, rk the mixing rate of the hydrometeor k of
density �k, velocity uk, and equivalent diameter Dk .
Here, D(·)/Dt � 	(·)/	t � u · �(·) and D(·)/Dtk � 	(·)/	t �
uk · �(·) are the material derivatives with respect to the
motion of air and of the particle k, respectively. The
moist air momentum changes under the action of the
pressure gradient force, the gravity force, the diver-
gence of the viscous stress vector of moist air �, the
drag force exerted by all the hydrometeors, and the
momentum change associated with phase changes.

3. Dynamic virtual temperature

For a nonsheared flow (� · � � 0), we obtain from
(2) that the vertical component of the momentum equa-
tion of the moist air is

Dw

Dt
� �

1
�

�p

�z
� g � g �

k

qk � Bz , �3�

where � � �a(1 � r�) is the density of moist air, w is the
vertical component of its velocity, qk is the mass of all
the particles of order k per unit of mass of moist air q�,
and Bz � �(
k wk Dqk /Dtk � w Dq� /Dt) accounts for
the effects of phase changes. The term �g 
k qk �
�gqw in the right-hand side of (3) represents the drag
force of the particles on the moist air.

In a hydrostatic atmosphere, the gravity, and the
pressure gradient force can be represented in term of
the virtual temperature of the moist parcel, T� � T(1 �
0.608q�), and of the surrounding air, T �� � T �(1 �
0.608q��) (cf. Curry and Webster 1999). Therefore, from
(3) we obtain

Dw

Dt
� �T�

T ��
� 1�g � gqw � Bz . �4�

We now define the dynamic virtual temperature, T�,d,
as the temperature that dry air should have to experi-
ence the same vertical acceleration as a parcel of moist
air in presence of condensed water. Therefore, it fol-
lows that the momentum equation for the parcel is
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Dw

Dt
� �T�,d

T ��
� 1�g. �5�

It should be stressed that T �� in (5) is associated with the
vertical pressure gradient, which does not depend on
the condensed water load of the air surrounding the
parcel. Some authors use the environment density tem-
perature that includes the condensed phase to calculate
the gradient pressure force (Emanuel 1994). Even
though conceptually incorrect, there are no practical
implications from this approximation because the dif-
ference between the virtual temperature of the envi-
ronment and its density temperature is equal to T � q�w ,
where the prime sign refers to the environment condi-
tions, which is of the same order of magnitude that the
uncertainty associated with the measurement of the
temperature itself. Equating (4) and (5) and solving for
T�,d, we obtain

T�,d � T ���T�

T ��
� qw �

Bz

g � � T� � T ��qw � T ��
Bz

g
.

�6�

Because O(q��) � O(q�) � 10�2, O(qw) � O(q�), and, as
shown in section 4, O(Bz/g) 
 O(q�) in the develop-
ment of (6) we ignored the terms containing the prod-
ucts q��q� and q��Bz /g. Then T�,d can be approximated by

T�,d ≅ T�1 � 0.608q� � qw � Bz �g�. �7�

In a flow where all the hydrometeors move at equilib-
rium velocity and there are no phase transitions Bz � 0
and from (1) and (7) we obtain that T�,d � T�,c.

4. The order of magnitude of the contribution of
condensed water

From (4) the contribution of condensed water to the
vertical acceleration of moist air is due to the total
weight of the hydrometeors and phase transitions:

Az � �gqw � Bz � �gqw

Gravity

� �
k

wk

Dqk

Dtk
� w

Dq�

Dt

Phase transitions

.

�8�

We consider next the order of magnitude of the differ-
ent terms in (8).

a. The gravity contribution

The order of magnitude of the condensed water con-
tent, qw in a cloud is �10�3. Therefore, the order of
magnitude of the gravity term is

O��gqw� � 10�2 �m s�2�. �9�

b. Phase transitions

There are two situations to consider: 1) the growth by
condensation of the population of hydrometeors, and
2) the evaporation of the precipitation in a layer of
unsaturated air.

1) GROWTH BY CONDENSATION

To proceed to the scale analysis we assume a cloud
characterized by a population of n (m�3) hydrometeors
of same size and mass, moving at equilibrium velocity,
wk � w � wT, where w is the vertical velocity of the air
parcel and wT is the terminal velocity of the hydrome-
teor. In this case the acceleration due to condensation is

��
k

wk

Dqk

Dtk
� w

Dq�

Dt
≅ ��w � wT�

Drw

Dtp
� w

Dr�

Dt
,

�10�

where D(·)/Dtp � 	(·)/	t � (w � wT) 	(·)/	z and
D(·)/Dt � 	(·)/	t � w	(·)/	z are the material derivatives
in a one-dimensional flow, following the hydrometeors
and the moist air, respectively, and rw � 
k qk is the
condensed water mixing ratio.

The rate of variation of the water mixing ratio and
the vapor mixing ratio are given by the conservation
equations of mass (Bannon 2002)

Drw

Dtp
� ṙ�,cond, and

Dr�

Dt
� �ṙ�,cond, �11�

where ṙ�,cond is the rate of condensation. By substitution
of (11) into (10), we obtain that the phase transitions
term is given by �wTṙ�,cond.

We estimate next the magnitude of �wTṙ�,cond in
ideal conditions for representative clouds considering
supersaturation, pressure, and temperature constants.
For a n(D) droplet population

Drw

Dtp
�

1
�a

n
Dmp

Dtp
� 2�n

�w

�a
D

S � 1
Fk � Fd

, �12�

where the rate of condensation is calculated with the
simplified growth equation for one droplet (Mason
1971) of mass mp, Fk represents the thermodynamic
term that is associated with heat conduction, Fd the
term associated with vapor diffusion, S is the ambient
saturation ratio.

In the particular case of a water cloud, the terminal
velocity of cloud droplets up to 80-�m diameter is given
by the Stokes law, wT(m s�1) � 1.19 � 106(D(cm)/2]2

(cf. Rogers and Yau 1989). Since the terminal velocity
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of cloud particles depends on the diameter square of
the particle, in a cloud with a uniform size particle dis-
tribution the phase change term is proportional to the
liquid water content of the cloud for given thermody-
namic condition. For an ambient saturation ratio of S �
1.05, a temperature T � 273 K, a pressure of 80 kPa,
and a liquid water content of 3 g kg�1, the order of
magnitude of this term in typical clouds is O(10�5)
(m s�2).

2) EVAPORATION OF PRECIPITATION

To estimate the magnitude of the evaporation term
we assume stationary precipitation and hydrometeor
size distributions following Marshall–Palmer (MP) ex-
ponential spectra and crossing an atmospheric layer
with relative humidity of 70% and w � 0 m s�1. The
hydrometeor velocity is calculated according to the fol-
lowing empirical formulas:

(i) rain case (Rogers and Yau 1989)

wT �m s�1� � 8 � 103�D�cm��2�,

80 �m 	 D 	 1.2 mm, �13a�

wT �m s�1� � 2.2 � 103�D�cm��2,

D 
 1.2 mm; �13b�

(ii) hail case (cf. Pruppacher and Klett 1980)

wT �m s�1� � 9�D�cm��0.8, 0.1 cm 	 D 	 8 cm.

�13c�

The rate of evaporation is calculated by the growth
equation (Mason 1971) and the phase change term is
given by

��
k

wk

Drk

Dtk
� 2�

�P

�k

S � 1
Fk � Fd

�
Dmin

Dmax

DwT�D�N�D� dD,

�14�

where D is the hydrometeor equivalent diameter and
N(D)dD � N0e��DdD is the number of drops per unit
volume with diameters between D and D � dD. Table
1 gives the characteristics properties of the raindrop
spectra simulated as well as the value of the phase
change term for each case. The table shows that

��
k

wk�Drk �Dtk� 	 O�10�4� �m s�2�. �15�

Because the contribution of the phase change term,
(15), is negligible with respect to the gravity term, (9),
(7) shows that the commonly used expression for vir-
tual temperature, (1), represents well the impact of the
presence of water on the vertical air movement.

5. Conclusions

Herein clouds have been considered as multicompo-
nent and multiphase systems whose dynamical state is
represented by the equation of motion of the hydro-
meteors and of the saturated air (9). From this last
equation, the equation of state of ideal gases, the hy-
drostatic equilibrium hypothesis, and the definition of
virtual temperature for humid air, we obtained the tem-
perature that dry air should have in order to experience
the same vertical acceleration than the saturated air in
clouds. We call it the dynamic virtual temperature of
the parcel. It depends on the vapor mixing ratio, the
liquid and/or solid water content, and phase transitions
of the hydrometeors.

The analysis of the order of magnitude of the water
terms shows that in a nonturbulent flow the phase tran-
sition terms are negligible. For this reason, the dynamic

TABLE 1. Phase acceleration term due to evaporation of hydrometeors in a subsaturated atmospheric layer with a saturation ratio
S � 0.7. CET � central European time.

Type of rainfall
N0

(m�3 mm�1)
�

(mm�1)
R

(mm h�1)
|��kwk(drk /dtk) |

(�10�5 m s�2)

6 Jun 1968* 2205–2235 CET, thunderstorm* 35 000 3.7 10.2 6.5
2235–2310 CET, thunderstorm* 4000 2.5 5.8 2.3

19 Jun 1969* 0510–0540 CET, shower* 16 000 3.8 4.0 2.8
0550–0620 CET, widespread rain* 8000 2.6 8.0 4.2

Theoretical distributions MP distribution 8000 41.0R�0.21 10 4.5
MP distribution 8000 41.0R�0.21 50 12.0
MP distribution 8000 41.0R�0.21 100 17.0
Hail** 52 0.33 3.1 � 10�3

* Raindrop size distributions of MP type based on data of Waldvogel (1974).
** Typical hailstone size distribution based on data of Federer and Waldvogel (1975) (cf. Pruppacher and Klett 1980).
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virtual temperature is formally identical to the expres-
sion of the cloudy virtual temperature. According to
this last, a cloud is seen as a mixture of three gases: dry
air, water vapor, and a hydrometeor-pseudo-gas, all
three moving at the same velocity. Buoyancy is then
associated with the density of the mixture. From the
point of view of the dynamic virtual temperature,
changes in buoyancy are due to the drag force between
the hydrometeors and the moist air because of their
relative motion. However, during their fall, hydromete-
ors quickly reach equilibrium and because the pressure
gradient force is negligible, the drag force is practically
equal and opposite to the gravity force. With respect to
calculations, this condition is equivalent to a change of
density of the air parcel equal to the partial density of
the included hydrometeors. That is why (1) and (7) are
numerically equivalent. It is rather the physical inter-
pretation commonly given to the cloudy temperature
that is at fault. It does not represent the temperature at
which dry air has the same density as cloud air at the
same pressure, but rather the temperature at which dry
air experiences the same acceleration as cloud air.

Furthermore, it is important to notice that in a quasi-
hydrostatic atmosphere the pressure gradient force act-
ing on the air parcel does not depend on the loading of
hydrometeors. The pressure gradient is function of the
density of the surrounding humid air, namely of its vir-
tual temperature. However, the errors due to the use of
a virtual temperature accounting for the water load in
the calculation of the pressure gradient as suggested in
the literature are of the same order of magnitude as the
errors due to the measurement of the temperature itself.

Acknowledgments. This work was partially supported
by the Canadian Foundation for Climate and Atmo-
spheric Sciences. We are grateful to Adelina Alexandru
for assistance with the derivation of the equations.

REFERENCES

Arnaldson, G., R. S. Greenfield, and E. Newburg, 1968: A nu-
merical experiment in dry and moist convection including the
rain stage. J. Atmos. Sci., 25, 404–415.

Bannon, P. R., 2002: Theoretical foundations for models of moist
convection. J. Atmos. Sci., 59, 1967–1982.

Clark, T. L., and R. List, 1971: Dynamics of a falling particle zone.
J. Atmos. Sci., 28, 718–727.

Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynam-
ics. Academic Press, 880 pp.

Curry, J. C., and P. J. Webster, 1999: Thermodynamics of Atmo-
sphere and Oceans. Academic Press, 471 pp.

Dufour, L., 1963: Sur la température virtuelle et la pression vir-
tuelle de l’air humide (On the virtual temperature and virtual
pressure of the moist air). Institut Royal Météorologique de
Belgique. Publications Série 50, No. 40, 2–16.

Emanuel, K. A., 1994: Atmospheric Convection. Oxford Univer-
sity Press, 550 pp.

Federer, B., and A. Waldvogel, 1975: Hail and rain drop size
distributions from a Swiss multicell storm. J. Appl. Meteor.,
14, 91–97.

Guldberg, C. M., and H. Mohn, 1876: Études sur les Mouvements
de l’Atmosphère (Studies on the Atmosphere Motion). Part 1,
Christiana, 39 pp.

Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.
Jacobson, M. Z., 2000: Fundamentals of Atmospheric Modeling.

Cambridge University Press, 656 pp.
List, R., and E. P. Lozowski, 1970: Pressure perturbations and

buoyancy in convective clouds. J. Atmos. Sci., 27, 168–170.
Mason, B. J., 1971: The Physics of Clouds. Oxford University

Press, 671 pp.
Ogura, Y., 1963: The evolution of a moist convective element in a

shallow, conditionally unstable atmosphere: A numerical cal-
culation. J. Atmos. Sci., 20, 407–424.

Pruppacher, H. R., and J. D. Klett, 1980: Microphysics of Clouds
and Precipitation. D. Reidel Publishing, 714 pp.

Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud
Physics. Pergamon Press, 293 pp.

Saunders, P. M., 1957: The thermodynamics of saturated air: A
contribution to the classical theory. Quart. J. Roy. Meteor.
Soc., 83, 342–350.

Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos.
Sci., 31, 1067–1078.

AUGUST 2007 N O T E S A N D C O R R E S P O N D E N C E 2979


