
Compilers and executables
(the dark side of the force)

Michel Valin
CIOB / HPCS

Compilers and Executables – Page 2 – April 11, 2011

Tools

• The basic tools
– Compilers (cc, CC, f77, f90, …)

▪ Transforms source code into machine code

– Linker (ld)
▪ Builds an executable file

– Library manager (ar)
▪ Allows to maintain ordered sets of machine code objects

– Symbol lister (nm)
▪ Lists symbols defined and used in object code

– Library dependency lister (ldd)
▪ Finds which libraries will be used at run time

– Symbol remover (strip)
▪ Make an object smaller by removing debug and info symbols

– Find strings in object (strings)
▪ Extract strings (C style, null terminated) from binary file

Compilers and Executables – Page 3 – April 11, 2011

The code labyrinth

source
files

shared
objects (.so)

executable
file

object
files (.o)

archive
libraries (.a)

dynamic
libraries

compilers
Archiver

(ar)

l
i

Linker
(ld)

Compilers and Executables – Page 4 – April 11, 2011

Static linking (no system dependencies)

Static
linker

static
libraries

object
files (.o)

static
libraries

static
libraries

Heap

Application code

Stack

Application file

Compilers and Executables – Page 5 – April 11, 2011

Static linking (no system dependencies)

• Executable modules are rarely totally static
– User's own libraries are usually static
– System libraries are usually dynamic (except on some platforms

like SUPER-UX where shared objects do not exist)
– Application libraries (commercial as well as open source) are

often dynamic

Compilers and Executables – Page 6 – April 11, 2011

Dynamic linking (simple case)

Static
linker

Heap

Stack

Application file Application code

dynamic
libraries

Dynamic library references Dynamic library references

dynamic
libraries

object
files (.o)

Compilers and Executables – Page 7 – April 11, 2011

Static + dynamic linking (most usual case)

• The normal state of affairs is a mix of static and dynamic
libraries

Compilers and Executables – Page 8 – April 11, 2011

Static + dynamic linking (most usual case)

Static
linker

Heap

Stack

Application file

dynamic
libraries

Dynamic library references

dynamic
libraries

object
files (.o)

static
libraries

static
libraries

Application code

Dynamic library references

static
libraries

Compilers and Executables – Page 9 – April 11, 2011

Runtime linking

• Run time dynamic linking is also used by software where
the name of the modules to be called is not known in
advance but is determined at run time (Python, Perl,
Matlab, IDL,)

Compilers and Executables – Page 10 – April 11, 2011

Runtime linking

Static
linker

Heap

Stack

Application file Application code

dynamic
libraries

Dynamic library references Dynamic library references

dynamic
libraries

object
files (.o)

shared
object (.so)

shared
object (.so)

Compilers and Executables – Page 11 – April 11, 2011

The whole show

Static
linker

Heap

Stack

Application file

dynamic
libraries

Dynamic library references

dynamic
libraries

object
files (.o)

shared
object (.so)

shared
object (.so)

static
libraries

static
libraries

Application code

Dynamic library references

static
libraries

Compilers and Executables – Page 12 – April 11, 2011

Predictability of results

• Results are not always as intuitive as they seem
– Library order

▪ Especially when a symbol is defined in more than one library

– When is a symbol dependency noticed ?
– On pass linker side effects

▪ x from lib1 calls b from lib2 and y from lib2 calls a from lib1

– Some linkers are smarter than others (and therefore produce
different results)

lib1 lib2

x b

ya

Compilers and Executables – Page 13 – April 11, 2011

Which library will I end up using ?

• Static libraries
– Produce (and read) a load map

• Dynamic libraries
– ldd will tell

Compilers and Executables – Page 14 – April 11, 2011

Which library will I end up using ?

A practical example
Library libx.a contains
subroutine a ! suba1.f90
print *,'this is a from library x'
return
end
subroutine b ! subb.f90
print *,'this is b from library x'
return
end

Library liby.a contains
subroutine a ! suba2.f90
print *,'this is a from library y'
return
end
subroutine c ! subc.f90
print *,'this is c from library y'
call a
return
end

Program test1
call b
call c
stop
end

Program test2
call a
call b
call c
stop
end

Compilers and Executables – Page 15 – April 11, 2011

Which library will I end up using ?

• Created with

• FC -c sub*.f90

• ar rcv libx.a suba1.o subb.o

• ar rcv liby.a suba2.o subc.o

• FC test1.f90 -L. -lx -ly -o test1

• FC test2.f90 -L. -lx -ly -o test2

• FC test2.f90 subc.f90 -L. -lx -ly -o test3

• (FC is the appropriate compiler name)

• What will the execution output of test1 and test2 be

Compilers and Executables – Page 16 – April 11, 2011

Which library will I end up using ?

• IBM AIX output
– c6f14p4m 5% ./test1

– this is b from library x

– this is c from library y

– this is a from library xx

– c6f14p4m 6% ./test2

– this is a from library x

– this is b from library x

– this is c from library y

– this is a from library x

– c6f14p4m 7% ./test3

– this is a from library x

– this is b from library x

– this is c from library y

– this is a from library x

• Linux output
– averroes 509% ./test1

– this is b from library x

– this is c from library y

– this is a from library yy

– averroes 510% ./test2

– this is a from library x

– this is b from library x

– this is c from library y

– this is a from library x

– averroes 511% ./test3

– this is a from library x

– this is b from library x

– this is c from library y

– this is a from library x

Compilers and Executables – Page 17 – April 11, 2011

Which library will I end up using ?

• Why did we get a difference
– Linux uses a one pass no look back gnu linker
– test1 calls b and c
– The loader goes through libx looking for b and c
– The loader finds b, uses it, does not find c
– The loader then goes through liby, finds c, uses it, discovers

that c needs a.
– The loader DOES NOT LOOK BACK into libx, finds a in liby

uses it from libb

• What if suba2.o is removed from liby on linux?
– r.f90 test1.f90 -L. -lx -ly -o test1
– ./liby.a(subc.o): In function `c_':
– subc.f90:(.text+0xbe): undefined reference to `a_'

Compilers and Executables – Page 18 – April 11, 2011

Which library will I end up using ?

• Different outcome on AIX
– The AIX linker remembers the order of the libraries
– test1 calls b and c
– The loader goes through libx looking for b and c
– The loader finds b, uses it, does not find c
– The loader then goes through liby, finds c, uses it, discovers

that c needs a.
– The loader LOOKS BACK into libx, finds a in libx, uses it from

libx

• What if suba2.o is removed from liby on AIX ?
– xlf test1.f90 -L. -lx -ly -o test1
– ** test === End of Compilation 1 ===
– 1501-510 Compilation successful for file test.f90.

Compilers and Executables – Page 19 – April 11, 2011

Which library will I end up using ?

• What happened for test3
– The linker loads test3.o and subc.o
– test3 calls b and c, c calls a
– The linker already has c from subc.o
– The loader goes through libx looking for b and aa
– The loader finds b and a in liby, uses them
– The loader then goes through liby, needs nothing any more.

Compilers and Executables – Page 20 – April 11, 2011

Common block init problem (1)

averroes 525% cat prog1.f90
program prog1
call sub01
call sub02
stop
end

averroes 526% cat
sub01.f90
subroutine sub01
common /my_common/a,b
data a / 1.0/
print *,'subroutine sub01'
return
end
averroes 527% cat sub02.f90
subroutine sub02
common /my_common/a,b
data b / 2.0/
print *,'subroutine sub02'
return
end

FC prog1.f90 sub01.f90 sub02.f90
prog1.f90:
sub01.f90:
sub02.f90:
sub02.o: In function `.C1_302':
sub02.f90:(.data+0x30): multiple definition of `my_common_'
sub01.o:sub01.f90:(.data+0x30): first defined here

averroes 534% cat sub03.f90
subroutine sub02
common /my_common/a,b
print *,'subroutine sub02'
return
end

FC prog1.f90 sub01.f90 sub03.f90
prog1.f90:
sub01.f90:
sub02.f90:

Compilers and Executables – Page 21 – April 11, 2011

Common block init problem (2)

averroes 530% nm sub01.o
00000018 d .C1_283
00000010 d .C1_285
00000020 d .C1_300
0000002c d .C1_302
0000001c d .C1_303
00000000 d .C1_306
00000014 d .C1_308
 U _GLOBAL_OFFSET_TABLE_
000000c0 t __sub01_END
00000030 D my_common_
 U pgf90_compiled
 U pgf90io_ldw
 U pgf90io_ldw_end
 U pgf90io_ldw_init
 U pgf90io_src_info
00000010 C pghpf_0_
00000001 C pghpf_0c_
00000020 C pghpf_0l_
00000004 C pghpf_lineno_
00000004 C pghpf_me_
00000004 C pghpf_np_
00000010 T sub01_

averroes 531% nm sub02.o
00000018 d .C1_283
00000010 d .C1_285
00000020 d .C1_300
0000002c d .C1_302
0000001c d .C1_303
00000000 d .C1_306
00000014 d .C1_308
 U _GLOBAL_OFFSET_TABLE_
000000c0 t __sub02_END
00000030 D my_common_
 U pgf90_compiled
 U pgf90io_ldw
 U pgf90io_ldw_end
 U pgf90io_ldw_init
 U pgf90io_src_info
00000010 C pghpf_0_
00000001 C pghpf_0c_
00000020 C pghpf_0l_
00000004 C pghpf_lineno_
00000004 C pghpf_me_
00000004 C pghpf_np_
00000010 T sub02_

Compilers and Executables – Page 22 – April 11, 2011

Common block init problem (3)

averroes 531% nm sub02.o
00000018 d .C1_283
00000010 d .C1_285
00000020 d .C1_300
0000002c d .C1_302
0000001c d .C1_303
00000000 d .C1_306
00000014 d .C1_308
 U _GLOBAL_OFFSET_TABLE_
000000c0 t __sub02_END
00000030 D my_common_
 U pgf90_compiled
 U pgf90io_ldw
 U pgf90io_ldw_end
 U pgf90io_ldw_init
 U pgf90io_src_info
00000010 C pghpf_0_
00000001 C pghpf_0c_
00000020 C pghpf_0l_
00000004 C pghpf_lineno_
00000004 C pghpf_me_
00000004 C pghpf_np_
00000010 T sub02_

averroes 536% nm sub03.o
00000018 d .C1_283
00000010 d .C1_285
00000020 d .C1_300
0000002c d .C1_302
0000001c d .C1_303
00000000 d .C1_306
00000014 d .C1_308
 U _GLOBAL_OFFSET_TABLE_
000000c0 t __sub02_END
00000008 C my_common_
 U pgf90_compiled
 U pgf90io_ldw
 U pgf90io_ldw_end
 U pgf90io_ldw_init
 U pgf90io_src_info
00000010 C pghpf_0_
00000001 C pghpf_0c_
00000020 C pghpf_0l_
00000004 C pghpf_lineno_
00000004 C pghpf_me_
00000004 C pghpf_np_
00000010 T sub02_

Compilers and Executables – Page 23 – April 11, 2011

Common block init problem (4)

• FC prog1.f90 sub01.f90 sub02.f90
– Initializing a common block with a data statement DEFINES a

symbol with the name of the common block
– sub01 defines my_common
– sub02 defines my_common
– OOPS, duplicate symbol

• FC prog1.f90 sub01.f90 sub03.f90
– Declaring a common block only produces a REFERENCE to en

elsewhere defined symbol
– sub01 defines my_common
– sub02 references my_common
– Everybody is happy

• Common blocks must be initialized in ONE PLACE only

Compilers and Executables – Page 24 – April 11, 2011

Controlling dynamic libraries (AIX)

• Side effects of switching compiler libraries (1)
– xlf test1.f90 -o test1 -L. -lx -ly

– LIBPATH= xlf=/usr/bin/xlf

– test1 needs:

– /usr/lib/libc.a(shr.o)

– /usr/lpp/xlf/lib/libxlf90.a(io.o)

– /unix

– /usr/lib/libcrypt.a(shr.o)

– LIBPATH=/opt/ssm/XLF_12.1.0.0_aix53-ppc-64/usr/lib

– test1 needs:

– /usr/lib/libc.a(shr.o)

– /opt/ssm/XLF_12.1.0.0_aix53-ppc-64/usr/lib/libxlf90.a(io.o)

– /unix

– /usr/lib/libcrypt.a(shr.o)

Compilers and Executables – Page 25 – April 11, 2011

Controlling dynamic libraries (AIX)

• Side effects of switching compiler libraries (2)
– LIBPATH=/opt/ssm/XLF_12.1.0.0_aix53-ppc-64/usr/lib:

xlf=/opt/ssm/XLF_12.1.0.0_aix53-ppc-64/bin/xlf

– xlf test1.f90 -o test1b -L. -lx -ly

– test1b needs:

– /usr/lib/libc.a(shr.o)

– /opt/ssm/XLF_12.1.0.0_aix53-ppc-64/usr/lib/libxlf90.a(io.o)

– /unix

– /usr/lib/libcrypt.a(shr.o)

– forcing LIBPATH=

– test1b needs:

– /usr/lib/libc.a(shr.o)

– /opt/ssm/XLF_12.1.0.0_aix53-ppc-64/usr/lib/libxlf90.a(io.o)

– /unix

– /usr/lib/libcrypt.a(shr.o)

Compilers and Executables – Page 26 – April 11, 2011

Controlling dynamic libraries (AIX)

• What happened ?

• Case (1)
– We were using the DEFAULT compiler and set of libraries

– No special information left in test1 executable

– LIBPATH forces usage of dynamic libraries from that path

• Case (2)
– We were using a special instance of the compiler, that also defined the

LIBPATH environment variable

– Information about dynamic libraries to be used was left INSIDE the executable

– LIBPATH forces usage of libraries from that path

– If LIBPATH is absent the path to the proper dynamic libraries is taken from the
executable

Compilers and Executables – Page 27 – April 11, 2011

Controlling dynamic libraries (AIX)

• How to play it safe on AIX
– When creating executables

▪ Suppress default compiler
▪ Explicitely use a compiler version (. r.ssmuse.dot)

– In jobs that run these executables
▪ Suppress default compiler (do not risk forcing another version)
▪ Use ldd the check where the libraries come from

• Surprise scenario
– Create executable on maia or saiph using system defaults
– Run executable on other machine using system defaults
– Get different results (#@!$%)
– This can happen because the executable will look for the libraries

in the default place and not find the same version

Compilers and Executables – Page 28 – April 11, 2011

Controlling dynamic libraries (Linux)

• Same method as under AIX
– LD_LIBRARY_PATH is used instead of LIBPATH

(so much for standards between members of the *NIX family)

• With an extra twist in the plot
– Our local default setup for the Portland Group compiler forces

most FORTRAN runtime libraries to the STATIC version libraries
– Exception: programs using OpenMP need at least one dynamic

library from the PGI runtime (libnuma.so)

• Other linux compilers
– Gfortran (etch systems only) is fully dynamic
– SunStudio compiler setup also uses the STATIC libraries except

for OpenMP

Compilers and Executables – Page 29 – April 11, 2011

A few more tricks (AIX/Linux)

• I have a .o file, which compiler was used to generate it ?
(AIX xlf/xlc; Linux PGI, SunStudio, gfortran,gcc)

– strings -a xxx.o | grep '\(PGF90\)\|\(Sun Fort\)\|\(GCC:\)\|\(IBM XL\)'
(for an object file)

– strings -a yyy.a | grep '\(PGF90\)\|\(Sun Fort\)\|\(GCC:\)\|\(IBM XL\)'
(for a library)

• I have a .o file, what external symbols does it need
– nm xxx.o | grep ' U '

• Does library libz.a define symbol xyz
– nm libz.a | grep xyz | grep ' T '

Compilers and Executables – Page 30 – April 11, 2011

Compiling and testing at CMC

• Where do i edit and manage sources ?
– MY workstation (sources should be on /home/..., /home

filesystems are mounted an ALL machines)

• Where do I compile ?
– MY workstation (zeta head node if IBM application)

(yes, the very same linux compilers are available on all
workstations and servers)

– For delivery to operations : erg (saiph/zeta if AIX application)
– If i do not have a workstation: erg

• Where do i test ?
– MY workstation (interactive or batch)
– alef development cluster (BATCH ONLY)
– If i do not have a workstation: erg
– zeta/saiph (light interactive or BATCH)

Compilers and Executables – Page 31 – April 11, 2011

Compilers

• native FORTRAN compilers (main)
– AIX:

▪ IBM xlf (versions 10.1, 11.1, 12.1)
– . s.ssmuse.dot Xlf10 (64)
– . s.ssmuse.dot Xlf11 (64)
– . s.ssmuse.dot Xlf12 (64 , recommended)

– Linux: (32 bit version etch, 64 bit version kubuntu 9.10)

▪ PGI pgf90 (versions 6.1, 6.2, 7.2, 8.0, 9.0, 10)
– . s.ssmuse.dot pgi6 (32, legacy, not recommended)
– . s.ssmuse.dot pgi6xx (32, legacy)
– . s.ssmuse.dot pgi7xx (32 , not recommended)
– . s.ssmuse.dot pgi8xx (32 , not recommended)
– . s.ssmuse.dot pgi9xx (32/64, recommended , CUDA 64 bit)
– . s.ssmuse.dot pgi10xx (32/64, stable , CUDA 64 bit)
– . s.ssmuse.dot pgi11xx (64, bleeding edge , CUDA 64 bit)

Compilers and Executables – Page 32 – April 11, 2011

Compilers

• native FORTRAN compilers (others)
– AIX:

▪ NAG f95 (r.nagf95)

– Linux:
▪ SUN sunf90
▪ GNU gfortran
▪ NAG f95 (r.nagf95)

• native C compilers
– AIX: IBM xlc
– Linux: GNU cc/gcc, SUN suncc

Compilers and Executables – Page 33 – April 11, 2011

The local tools (meta compilers)

• multi platform compilation tools
(calling sequence similar to native compilers, forces library and I/O
compatibility options, can be used with ./configure ; make install)
also relies on Compiler_rules configuration file

– s.f77, s.f90, s.cc, s.CC, s.ftn, s.ftn90, s.GPPF, s.GPPF90

• multi language “universal” compiler
(calling sequence NOT compatible with native compilers)

– s.compile

• Configuration controlled
– EC_ARCH / BASE_ARCH / COMP_ARCH environment variables

ex: COMP_ARCH=pgi9xx, BASE_ARCH=Linux, EC_ARCH=Linux/pgi9xx

– Compiler_rules files

Compilers and Executables – Page 34 – April 11, 2011

Implicit paths

• Compile time
– Automatically added to include search path

▪ $EC_INCLUDE_PATH
▪ $ARMNLIB/include
▪ $ARMNLIB/include/$EC_ARCH

• Build time
– Automatically added to library search path

▪ $EC_LD_LIBRARY_PATH

Compilers and Executables – Page 35 – April 11, 2011

The local tools (extra arguments)

• Disassembled / reassembled options
– -O n (different from -On)

– -Dname=value

– -Iinclude/path

– -lmy_lib

– -Llibrary/path

– -o output_file

Compilers and Executables – Page 36 – April 11, 2011

The local tools (extra arguments)

• Extras (some borrowed from s.compile)
– -verbose

– -openmp

– -mpi

– -src source_file

– -debug

– -shared

– -dynamic

– -prof

Compilers and Executables – Page 37 – April 11, 2011

s.compile

• Multi language support using recognized extensions
– FORTRAN with custom preprocessing: .ftn, .ptn, .ftn90, .cdk90
– FORTRAN with own preprocessing: .F, .F90
– FORTRAN: .for, .f, .f90
– C: .c
– C++: .cc, .cpp, .cxx, .c++, .C, .CPP, .cp
– assembler: .s

• Driven by a configuration file (Compiler_rules)
– User may override with own configuration

 $HOME/userlibs/$EC_ARCH/Compiler_rules

– Forces library and I/O compatibility options
– Multiple architecture support (EC_ARCH env variable)

Compilers and Executables – Page 38 – April 11, 2011

s.compile arguments (1)

• -src (sources, .f, .F, .for, .ftn, .ptn, .f90, .F90, .cdk90,
 .c, .C, .CPP, .cxx, .c++, .cc, .cp, .s)

• -O (optimization, 0-4)

• -openmp

• -mpi

• -debug / -prof (use debugger / profiler)

• -includes (path for includes files, #include and include)

• -defines (=-Dname1=value2:-Dname2=value2 ...)

• -P (preprocessor pass only)

• -opt / -optc / -optf (=-option1:-option2:-option3 ...)
 compiler options / C options / Fortran options

Compilers and Executables – Page 39 – April 11, 2011

s.compile arguments (2)

• -obj (objects to add to the executable)

• -codebeta (object modules to add from environment)

• -libpath (path to be searched for libraries)

• -libappl (application libraries to use)

• -librmn (rmnlib version rmn_010 / rmnbeta_9.0 ...)

• -libsys (system libraries to use)

• -o (name of the executable)

• -shared (build a shared object [partial support])

• -conly (use cc to build executable instead of
Fortran)

Compilers and Executables – Page 40 – April 11, 2011

s.compile examples

• Fortran code
s.compile -src tdgauss.f90 -o a.out -librmn rmnbeta_011
s.compile -src tdgauss.f90 -o a.out -librmn rmn_010

• C main, no Fortran library involved
s.compile -o a.out -src r.abs_to_rel.c -conly

• C main , renamed, using rmnlib, built with Fortran
s.compile -src cmain.c -bidon c -o a.out -librmn rmn_010 \
 -defines=-Dmain=mymain -main mymain

• OpenMP Fortran program
s.compile -o a.out -openmp -src simu_opt30_nodata4.f -O 3

• MPI + OpenMP
s.compile -o a.out -openmp -src simu_opt30_nodata_mpi.f -mpi \
 -O 3 -libappl rpn_comm301 -librmn rmn_010

Compilers and Executables – Page 41 – April 11, 2011

Topics to add ?

• Send suggestions to
– service.hpcs@ec.gc.ca

Compilers and Executables – Page 42 – April 11, 2011

The END

Thank you for your attention

	ENTER MAIN TITLE HERE
	Contents
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

