
Marrying FORTRAN to C

M.Valin
CIOB

FORTRAN+C – Page 2 – February 2, 2010

C FORTRAN interoperability issues

• FORTRAN name mangling
(compiler specific, may be altered via switches)

• FORTRAN non predictable intrinsic type length
(may be altered via compiler switches e.g. -i8 -r8 ...)

• Argument passing (by address vs by value)

• Pointer arguments
(FORTRAN pointers are very complex entities)

• FORTRAN derived types vs C structs

• Hidden arguments (FORTRAN character strings)

• FORTRAN load time libraries and other items

• Proper FORTRAN run time library initialization

FORTRAN+C – Page 3 – February 2, 2010

ISO_C_BINDING

• FORTRAN 2003 intrinsic MODULE
USE ISO_C_BINDING

• Provides C type definitions to FORTRAN

• Provides C/FORTRAN pointer interoperability procedures

• Provides argument interoperability

• Provides some derived type and global data interoperability

• BIND(C [, NAME='...']) attribute
– For subroutines and functions
– For derived types
– For global data

FORTRAN+C – Page 4 – February 2, 2010

Interoperability of intrinsic types

Named constant C type or types

C_INT int
C_SHORT short int
C_LONG long int
C_LONG_LONG long long int
C_SIGNED_CHAR signed char, unsigned char
C_SIZE_T size_t
C_INT8_T int8_t
C_INT16_T int16_t
C_INT32_T int32_t
C_INT64_T int64_t
C_INTMAX_T intmax_t
C_INTPTR_T intptr_t

C_FLOAT float
C_DOUBLE double
C_LONG_DOUBLE long double

C_FLOAT_COMPLEX float _Complex
C_DOUBLE_COMPLEX double _Complex
C_LONG_DOUBLE_COMPLEX long double _Complex

C_BOOL _Bool
C_CHAR char

FORTRAN+C – Page 5 – February 2, 2010

Inetroperability of pointers

C_LOC(X) is an inquiry function that returns the C address of an object. X is permitted to be
 (i) a variable with interoperable type and type parameters that has the TARGET attribute
 and is either interoperable, an allocated allocatable variable, or a scalar pointer with a
 target; or
 (ii) a nonpolymorpic scalar without length parameters that has the TARGET attribute and is
 either an allocated allocatable variable, or a scalar pointer with a target.

C_FUNLOC(X) is an inquiry function that returns the C address of a procedure. X is permitted
 to be a procedure that is interoperable (see Section 5.6) or a pointer associated with
 such a procedure;

C_ASSOCIATED (C_PTR1[, C_PTR2]) is an inquiry function for object or function pointers. It
 returns a default logical scalar. It has the value false if C_PTR1 is a C null pointer or if
 C_PTR2 is present with a different value; otherwise, it has the value true.

FORTRAN+C – Page 6 – February 2, 2010

Interoperability of pointers

C_F_POINTER (CPTR, FPTR [, SHAPE])) is a subroutine with arguments
 CPTR is a scalar of type C_PTR with INTENT(IN). Its value is the C address of an entity
 That is interoperable with variables of the type and type parameters of FPTR or
 Was returned by a call of C_LOC for a variable of the type and type parameters
 of FPTR. It must not be the C address of a Fortran variable that does not have
 the TARGET attribute.
 FPTR is a pointer that becomes pointer associated with the target of CPTR. If it is an
 array, its shape is specified by SHAPE.
 SHAPE (optional) is a rank-one array of type integer with INTENT(IN). If present,
 its size is equal to the rank of FPTR. If FPTR is an array, it must be present.

C_F_PROCPOINTER (CPTR, FPTR)) is a subroutine with arguments
 CPTR is a scalar of type C_FUNPTR with INTENT(IN). Its value is the C address of
 a procedure that is interoperable.
 FPTR is a procedure pointer that becomes pointer associated with the target of CPTR

FORTRAN+C – Page 7 – February 2, 2010

Interoperability of derived types

• Type MUST be given the BIND attribute

• Each component
▪ MUST have interoperable type
▪ MUST NOT be a pointer
▪ MUST NOT be allocatable

• example
– type, bind(c) :: mytype

 integer(C_INT) :: I, J
 real (C_FLOAT) :: S
end type mytype

– typedef struct {
 int m,n;
 float r;
} myctype

– are interoperable

FORTRAN+C – Page 8 – February 2, 2010

Interoperability of variables

• SCALAR variable
– MUST be of interoperable type
– MUST NOT be a pointer
– MUST NOT be allocatable
– character arguments MUST have length 1

• ARRAY variable
– MUST be of interoperable type
– MUST have explicit shape or assumed size

• Example
▪ INTEGER :: a(1, 3:7, *)

is interoperable with
int b[][5][18]

▪ CAVEAT: subscripts are REVERSED

FORTRAN+C – Page 9 – February 2, 2010

Interoperability of procedures

• FORTRAN procedure MUST have
– explicit interface
– BIND attribute
– interoperable arguments
– interoperable scalar result if function

• FORTRAN procedure SHOULD be given explicit C name
– BIND(C, NAME='External_Name')
– default name is not reliable

(external name should be different if case is ignored)

• FORTRAN procedure MAY have VALUE arguments
(VALUE attribute for the argument type)

– must correspond to a non pointer C argument
– except if it is C_PTR (corresponds to a C pointer)

FORTRAN+C – Page 10 – February 2, 2010

FORTRAN calling C example

int C_Library_Function(void* sendbuf, int sendcount, int
*recvcounts)

USE ISO_C_BINDING
IMPLICIT NONE

INTERFACE
INTEGER (C_INT) FUNCTION C_LIBRARY_FUNCTION &
(SENDBUF, SENDCOUNT, RECVCOUNTS) BIND(C, NAME='C_Library_Function')
TYPE (C_PTR), VALUE :: SENDBUF
INTEGER (C_INT), VALUE :: SENDCOUNT
TYPE (C_PTR), VALUE :: RECVCOUNTS
END FUNCTION C_LIBRARY_FUNCTION
END INTERFACE

INTEGER L
REAL(C_FLOAT), TARGET :: SEND(100)
INTEGER(C_INT) :: SENDCOUNT
INTEGER(C_INT), ALLOCATABLE, TARGET :: RECVCOUNTS(:)
. . .
ALLOCATE(RECVCOUNTS(100))
. . .
L = C_LIBRARY_FUNCTION(C_LOC(SEND), SENDCOUNT,C_LOC(RECVCOUNTS))
. . .

FORTRAN+C – Page 11 – February 2, 2010

FORTRAN to C (a real example)

program rrbx2ppm ! FORTRAN and C both writing to stdout
use iso_c_binding
implicit none

interface
 integer(C_INT) function c_write(fd,buf,count) BIND(C,name='write')
 use iso_c_binding
 integer (C_INT), value :: fd, count
 type (C_PTR), value :: buf
 end function c_write
end interface

integer nbr,nr,lcp,ncp,i
integer, pointer, dimension(:,:) :: arr
byte, pointer, dimension(:,:) :: rgb

open(unit=1,file=trim(infile),action='READ',form='UNFORMATTED')
read(1)nbr,nr,lcp,ncp
allocate(arr(lcp,max(3,ncp))) ! allocate a raster (ncp color planes)
allocate(rgb(3,nbr))
write(6,'(A,/,A,A,/,2I8,/,I8)')'P6','#',trim(comment),nbr,nr,255
call flush(6)

 i=c_write(1,c_loc(rgb(1,1)) , nbr*3)

close(1)

FORTRAN+C – Page 12 – February 2, 2010

C main() using FORTRAN libraries

• 2 itchy problems
– Properly initializing the FORTRAN runtime library
– Locating all the ingredients necessary to successfully build an

executable file (a.out)

• Use the FORTRAN compiler to build the executable
– It knows where all the relevant libraries and other necessary

items are located

• Use a FORTRAN main program calling the C main
– A FORTRAN program knows how to initialize the FORTRAN

runtime properly

FORTRAN+C – Page 13 – February 2, 2010

C main() using FORTRAN libraries

• 1 potential problem left
– My C main program uses argc / argv

• Use fmain2cmain in a dummy FORTRAN main
▪ program bidon
▪ USE ISO_C_BINDING
▪ interface
▪ subroutine my_c_main() BIND(C,NAME='my_c_main')
▪ end subroutine my_c_main
▪ end interface
▪ call fmain2cmain(my_c_main)
▪ stop
▪ end

• Rename main(int argc,char**argv) to
my_c_main(int argc,char**argv)

FORTRAN+C – Page 14 – February 2, 2010

C main() example

program bidon
use iso_c_binding
interface
 subroutine my_c_main() BIND(C,NAME='my_c_main')
 end subroutine my_c_main
end interface
call fmain2cmain(my_c_main)
stop
end
my_c_main(int argc,char**argv)
{
while(argc--){
 printf(" %s \n",*argv++);
}
printf("Hello World\n");
}
r.compile -src my_f_main.f90 -o a.out -obj my_c_main.o -librmn rmnbeta_011

./a.out

./a.out
Hello World

 ./a.out a b c d
 ./a.out
 a
 b
 c
 d
Hello World

	ENTER MAIN TITLE HERE
	Contents
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

